
Software
Development

Understanding How Software
Is Built and Maintained

© Garth Gilmour 2008Sample Content

Wh t i S ft D l t?What is Software Development?

A successful software organisation is one that consistentlyg y
deploys quality software that meets the needs of its users. An
organisation that can develop such software in a timely and
predictable fashion, with an efficient and effective use ofpredictable fashion, with an efficient and effective use of
resources, both human and material, is one that has a
sustainable business.

© Garth Gilmour 2008

Wh t i S ft D l t?What is Software Development?

 Software development is a process:
 The input is users requirements
 The output is executable code The output is executable code
 The process must deliver the functionality needed by clients

 Not always the same as what clients ask for…

 There are many kinds of software: There are many kinds of software:
 The gaming industry
 Embedded and realtime
 Business applications Business applications

 Developed for internal use only
 To be sold externally

© Garth Gilmour 2008

Wh t i S ft D l t?What is Software Development?

 Software combines the worst aspects of:
 Engineering

 Software must run properly and perform adequately Software must run properly and perform adequately
 Literature

 We must address the users needs and desires
 Production depends entirely on the suitability skills and Production depends entirely on the suitability, skills and

motivation of the development team
 Software is ultimately about people

 Clients developers and managers Clients, developers and managers
 Project management is notoriously hard

 Circumstances tend to encourage false optimism…

© Garth Gilmour 2008

Mi tiMisconceptions

 Software development is not about maths
 Profiling your code has not been important to

mainstream developers since the early 1970’smainstream developers since the early 1970 s
 There is a strong distinction between

 Academic Computing
 Scientific Computing
 Business Computing

 Software development is not difficult Software development is not difficult
Once you obtain a core set of skills
 There are natural software developers…

© Garth Gilmour 2008

Th S ft I d tThe Software Industry

 Initially software could be developed slowly
 Computers were highly expensive
 All development was bespoke
 The time and cost was relatively inexpensive

 Development was very gradual and careful
 Because compiling code took so long

L l l d h d t b itt h j t Low level code had to be written on each project

© Garth Gilmour 2008

Th S ft I d tThe Software Industry

 Software was a victim of its own success
 Demand increased exponentially
 Hardware prices fell rapidly
 Software development took an ever increasing

percentage of costs and timepercentage of costs and time
 PC’s and the Internet accelerated the process

Operating Systems provided basic servicesOperating Systems provided basic services
We are now all developing in ‘Internet Time’

© Garth Gilmour 2008

Th O ti S tThe Operating System

 Originally computers ran a single program
With the code on punch cards

 The program was responsible for everything
 Causing huge redundancy
Only 10% of the code was unique

 Operating Systems were created to:
 Allow more than one program to be run
 Provide a core API for common tasks

© Garth Gilmour 2008

Th O ti S tThe Operating System

 The OS coordinates all activity
 Every program is allocated a process

 The resources it needs to run

Multiple copies of a program may be running
 Each will be allocated its own process Each will be allocated its own process

 A process uses the OS to perform common tasks
 These are what we refer to as ‘system calls’

 It is not necessary that an OS offer a GUI
Windows and Apple do but UNIX does not

© Garth Gilmour 2008

Th O ti S tThe Operating System

Main Memory

Process One
(Word)

Process Two
(Excel)

Process Three
(Word)() () ()

Operating System

© Garth Gilmour 2008

Th O ti S tThe Operating System

 Only one program can run at a time
 The OS allows each process a slice of time on the processor
 This happens so quickly that normally you don’t notice it This happens so quickly that normally you don t notice it…

 Processes can communicate
 A single piece of software can be made up of multiple processes

C d f OS ill t k th Code for one OS will not work on another
 Even if both OS’s run on the same hardware

 E.g. Windows and Linux on an Intel CPU

© Garth Gilmour 2008

W iti S ftWriting Software

 Instructions are written in a programming language
 These are just typed into a text file
 Many programming languages exist Many programming languages exist

 The instructions must be converted
 Into those supported by the target CPU
 This instruction set of the CPU will be very limited This instruction set of the CPU will be very limited

 The conversion process is carried out by a compiler
 A compiler and code editor are a developers basic tools

© Garth Gilmour 2008

W iti S ftWriting Software

Code 100111001101
Executables

int main() {
int a = 2;

Code

Intel Compiler

100111001101
010110010101
000101010101
001111010101
010010101101;

int b = 3;
return a*b;

} Sun Compiler

100111001101
010110010101
000101010101
001111010101001111010101
010010101101

© Garth Gilmour 2008

W iti S ftWriting Software

 Usually all the code does not live in one file
Many files are complied and then linked together into

an executable
 The linker is a separate tool

 Not all the code must be written from scratch Not all the code must be written from scratch
 Pre compiled libraries will be supplied by:

 Other teams
 Third party vendors
 The OS itself

© Garth Gilmour 2008

W iti S ftWriting Software

Executable100111001101
010110010101

100111001101100111001101

Compiled Code

100111001101
010110010101
000101010101
001111010101

Executable010110010101
000101010101
001111010101
010010101101

010110010101
000101010101
001111010101
010010101101

100111001101
010110010101
000101010101
001111010101
010010101101

100111001101
010110010101
000101010101
001111010101
010010101101

Linker
010010101101
010010101101
010010101101
010010101101
010010101101

010010101101

100111001101100111001101

3rd Party Libraries

010010101101
010010101101
010010101101
010010101101

100111001101
010110010101
000101010101
001111010101
010010101101

100111001101
010110010101
000101010101
001111010101
010010101101

100111001101
010110010101
000101010101
001111010101
010010101101

100111001101
010110010101
000101010101
001111010101
010010101101

© Garth Gilmour 2008

010010101101010010101101

B ildi S ftBuilding Software

 The source code and libraries are stored inside
a version control system

S h MS S S f R ti l Cl C Such as MS SourceSafe or Rational ClearCase
 When changes are made the affected parts of

the system are rebuiltthe system are rebuilt
 This is a highly automated process

 Builds may be made daily, weekly or monthlyy y y y
 Some builds will be for release to the client
Others will be for internal use only

© Garth Gilmour 2008

B ildi S ftBuilding Software

Version SourceVersion
Control
System

Automated
Build Process

Source
and

Libraries
Software

The latest version
of the source is

The source is
fed into the

A new executable
is produced forof the source is

checked out
fed into the
compiler and
linker in a set
order

is produced for
deployment and
testing

© Garth Gilmour 2008

B ildi S ftBuilding Software

 Each developer will have their own build
 In order to develop and test new code

 Source code files will be changed frequently
 Developers check these in and out of the VCS
 The VCS records all the changes made

 Periodically milestones are reached
 The current version of each source file is used to

create a build of the product
 This is then rigorously tested

© Garth Gilmour 2008

 This is then rigorously tested

B ildi S ftBuilding Software

 Efficient software development requires:
 A properly used version control system
 An automated build environment
 A fast and thorough test harness

 We must be able to return to a previous build
 A problem may appear in some builds only

B t t b i ti t d i t th b ild Bug reports must be investigated against the build
they appeared in, e.g. Version 3.1 SP3

© Garth Gilmour 2008

B ildi S ftBuilding Software

Source and
Libraries for Software

V i 1Milestone 1 Version 1

Source andVersion
Control
System

Automated
Build Process

Source and
Libraries for
Milestone 2

Software
Version 1.1

Source and
Libraries for
Milestone 1

Software
Version 1.2

© Garth Gilmour 2008

Milestone 1

M i S ftManaging Software

Cost Quality Time Scope

1
2

37

8
1

2

37

8
1

2

37

8
1

2

37

8

4
5

6 4
5

6 4
5

6 4
5

6

© Garth Gilmour 2008

M i S ftManaging Software

 Project management is about four variables
 These are cost, quality, time and scope
 Plus the psychological consequences of each Plus the psychological consequences of each

 Each variable has a complex relationship with the others
 Changing one has a delayed effect on the others
 It is hard to predict the time and magnitude of the effect It is hard to predict the time and magnitude of the effect

 You can only ever fix three out of four
 For example if you try to fix quality, time and scope then cost will

th h th fgo though the roof…

© Garth Gilmour 2008

M i S ft C tManaging Software: Cost
 Increasing cost can involve

 Buying faster machines with better monitors
 Providing dedicated machines and networks for testing
 Purchasing expensive development tools for build management,

automated testing, code generation etc…
 Adding new people to the project
 Allocating money for overtime Allocating money for overtime

 Extra cost isn't a panacea
 Adding people slows progress till they can be trained
 Expensive tools are typically underused Expensive tools are typically underused
 Endless overtime kills creativity
 Adding hardware has diminishing returns

© Garth Gilmour 2008

M i S ft Q litManaging Software: Quality

 Internal quality is visible only to developers
 Simple, efficient and well-documented designs and code

 External quality is what is visible to the user External quality is what is visible to the user
 This includes ‘non-techie’ issues like GUI design
 Internal quality can temporarily be reduced without any visible

effect on external qualityeffect on external quality
 Sacrificing quality is tempting but fatal in the long term

 New developers cannot understand the code
F t t b dd d ith t i b Features cannot be added without causing bugs

 Fixing reported bugs consumes most of the coding time
 Eventually it is simpler to rewrite code than maintain it

© Garth Gilmour 2008

S ft O TiSoftware Over Time
K l d i dil t d d l tKnowledge is diluted and lost
Functionality is duplicated
Architecture is compromised
Developers scared to make changes
Unexpected problems keep occurring

Q
uality

p p p g

y

V1 V2 V3 V4 V5 V6 V7

© Garth Gilmour 2008

Team A Team B Team C

M i S ft SManaging Software: Scope
 Reducing scope is the best cure for a sick project

 Unfortunately it cannot always be applied
 Projects are almost always overly ambitiousj y y

 Writing software is ‘only’ a creative activity
 Developers can be pathologically optimistic
 Promises have to be made to win contracts
 The limits of current technology aren't understood

 Features should always be prioritised to reduce scope
 What core functionality is essential to the customer?
 What can be pushed out into another release?
 What features are of limited worth to the customer yet are

producing major technical problems?

© Garth Gilmour 2008

M i S ft TiManaging Software: Time

 Increasing the available time ‘cools down’ a project in
danger of imminent meltdown
 Teams focussed on cramming in functionality for immediate Teams focussed on cramming in functionality for immediate

release loose their long term perspective and overall goals
 Continuously releasing prototypes to the client is dangerous if

the client is driving the schedule
 Realistic timescales don’t solve everything

 Some technical problems cannot be solved by extra time alone...
 E.g. requirements that are not within the teams skill-setg q

 Many projects reach 80% completeness and then stay there…

© Garth Gilmour 2008

M i S ft SManaging Software: Summary

 A project will stand every chance of success if:
 The scope is set at achievable goals
 The timescale is planned realistically The timescale is planned realistically
 HR, hardware and software is properly allocated
 Maintaining and verifying quality is kept a priority

 Most projects are some distance from the ideal Most projects are some distance from the ideal
 One or more of the dials is always set too high
 Adding time and decreasing scope is the best long term solution

Addi t hil d i lit i t ti h t t fi Adding cost while decreasing quality is a tempting short term fix

© Garth Gilmour 2008

S ft D l t & PSoftware Development & Process

 There are many formal methods for developing software
 Very few companies use them as originally intended

 The oldest is waterfall developmentp
 Which simply lines up the different activities in logical order

 Requirements → Analysis → Design → Coding → Testing
 Waterfall development is fatally flawedp y

 Unless your team only develops one type of system
 Only in step ‘B’ do you discover mistakes made during step ‘A’

 Modern methodologies stress iterative developmentg p
 Many short waterfalls rather than a single big one
 Each mini-waterfall both implements new functionality and fixes

the problems which were identified during the last one

© Garth Gilmour 2008

W t f ll D l tWaterfall Development

Business Modelling

Requirements Analysis

Systems Analysis and Designy y g

Implementation

Testing

© Garth Gilmour 2008

It ti D l tIterative Development

 Keep releases as frequent as possible
 Do ‘mini-runs’ of analysis, design, coding and testing
 Add functionality in small cycles

 2/3 weeks usually works best
 Make sure each cycle delivers completed functionality that is Make sure each cycle delivers completed functionality that is

verifiable by the client

 Don’t be concerned with web/gui design
 Work from basic simple screens
 Layer on the style once the functionality is there

© Garth Gilmour 2008

It ti D l t (RUP)Iterative Development (RUP)

Inception Elaboration Construction Transition
n

Business Modelling

Requirementsa
t
i
o
n

Requirements

Analysis and Design

Implementation

I
t
e
r
a

Testing

O
n
e

I

© Garth Gilmour 2008

O

It ti D l tIterative Development

 Prioritise use cases according to:
 Those that have value to the development team

Th th t h l t th t Those that have value to the customer
 Developers should prioritise according to

 Verticality (functional coverage) Verticality (functional coverage)
 Knowledge of the problem domain

 Customers prioritise according top g
What will earn them money
 The simplest functionality that can be deployed in the

production environment

© Garth Gilmour 2008

production environment

It ti D l tIterative Development

Iteration Plan

Requirements Analysis / Design

ImplementationTesting

Release

© Garth Gilmour 2008

It ti Pl iIterative Planning

 All planning is iterative
 Full up front planning is counterproductive

T h ‘ ti ti ’ i i l d Too much ‘guestimation’ is involved
 Each iteration is planned around

 The use cases to be implemented
 The best estimates available for development time
 A comprehensive test plan to ensure quality

 New plans are written during each iteration New plans are written during each iteration
 These need to be revised based on

 Development time actually required on the last iteration
A f ti lit th t f il d t t l ft

© Garth Gilmour 2008

 Any functionality that failed tests or was left over

It ti Pl iIterative Planning

 Negotiation and re-prioritisation are natural
consequences of iterative development
We continually revise what we have achieved and

adjust the iteration plan
We increase or reduce the scope of the currentWe increase or reduce the scope of the current

version of the project based on feedback
 Iterations prevents nasty surprises Iterations prevents nasty surprises

 Hidden problems with the technology
 Building a system the customer doesn’t want

© Garth Gilmour 2008

U C E ti tiUse Case Estimation

 You cannot replace ‘yesterdays weather’
 Sensible estimates can only be given when you have:

 A skeleton architecture
 Key vertical and business use cases

 One interim measure is ideal days One interim measure is ideal days
 ‘Pure’ development days without meetings, logistical

problems, etcp ,
 Developers naturally think in terms of ideal days

© Garth Gilmour 2008

P j t E ti tProject Estimates

 You must allow time for
 Reworking the design and code
 Studying and responding to customer feedback
 Changing requirements
 Functional and load testing
Web design and usability testing
 Logistical and network problems Logistical and network problems
 Deployment issues

© Garth Gilmour 2008

M d li S ftModeling Software

 Software spends 10% of its life in development
 The rest is spent being used, maintained and upgraded (often by

different teams of developers)p)
 The quality of software inevitably degenerates over time

 Lucky developers work on green field projects
 They are ‘plank holders’ in new systems They are plank holders in new systems
 A great opportunity for personal growth

 But also a scary amount of responsibility

 Unlucky ones work with an existing code base Unlucky ones work with an existing code base
 Similar to doing someone else's laundry
 This is the majority of developers in the industry

© Garth Gilmour 2008

M d li S ftModeling Software

 Divining the intent of foreign code is very hard
 Although you can make a good living out of it
 The ’10 foot stick’ approach The 10 foot stick approach

 The best sources of information are
 Requirements Documents
 Suites of Unit Tests Suites of Unit Tests
 Design Diagrams

 There is one current standard for modelling
 Drawing diagrams to describe software
 The Unified Modeling Language (UML)

 Created by merging several earlier standards

© Garth Gilmour 2008

Th UML DiThe UML Diagrams
Diagram Description

Use Case Provides an overview of requirements
Activity Details a flow of events (usually requirements)y (y q)
Class Defines a set of classes and relationships between them
Sequence Illustrates how messages pass between objects
Collaboration Same as above but from a different perspectiveCollaboration Same as above but from a different perspective
Object Shows the values within a set of objects
State Details the lifecycle of an object
Component Defines a set of componentsComponent Defines a set of components
Deployment Describes how components are placed in nodes

© Garth Gilmour 2008

D t il Sh O UML DiDetails Shown On UML Diagrams

 In real life diagrams start vague and become precise
 The first draft captures the essentials and is low on detail
 Subsequent drafts add detail and bring us closer to code Subsequent drafts add detail and bring us closer to code
 The final version is an accurate representation of the code

 Don’t be afraid to use the UML for ‘sketching’
 Your diagram has value as long as it clarifies your thinking Your diagram has value as long as it clarifies your thinking

 However don’t use ‘sketching’ as an excuse
 Too many projects sketch some vague UML diagrams and hope

th d t il ill t th l t i dthe details will sort themselves out in code
 This will only happen in small projects with open lines of

communication and talented and experienced developers

© Garth Gilmour 2008

Analysis Level Diagrams

Help understand the problem
Sketching a solution with few details

Large ‘chunky’ classes with many jobs

‘Spike’ Applications

Proof on concept programs that confirm
you can use a particular technology and
that it can accomplish what you require

Design Level Diagrams

Represent a possible solution
Names, signatures, relationships
Enough detail to move into coding

Implementations

The application is incrementally built over a
series of iterations, preferably with unit,

acceptance and non-functional testsoug de a o o e o cod g p

Blueprints of Code

Full detail of implementation
Notes attached to describe intentions

Stereotypes used to show usage of patterns etc…

© Garth Gilmour 2008

Stereotypes used to show usage of patterns etc…
Usually reverse engineered from completed code

