
Software
Development

Understanding How Software
Is Built and Maintained

© Garth Gilmour 2008Sample Content

Wh t i S ft D l t?What is Software Development?

A successful software organisation is one that consistentlyg y
deploys quality software that meets the needs of its users. An
organisation that can develop such software in a timely and
predictable fashion, with an efficient and effective use ofpredictable fashion, with an efficient and effective use of
resources, both human and material, is one that has a
sustainable business.

© Garth Gilmour 2008

Wh t i S ft D l t?What is Software Development?

 Software development is a process:
 The input is users requirements
 The output is executable code The output is executable code
 The process must deliver the functionality needed by clients

 Not always the same as what clients ask for…

 There are many kinds of software: There are many kinds of software:
 The gaming industry
 Embedded and realtime
 Business applications Business applications

 Developed for internal use only
 To be sold externally

© Garth Gilmour 2008

Wh t i S ft D l t?What is Software Development?

 Software combines the worst aspects of:
 Engineering

 Software must run properly and perform adequately Software must run properly and perform adequately
 Literature

 We must address the users needs and desires
 Production depends entirely on the suitability skills and Production depends entirely on the suitability, skills and

motivation of the development team
 Software is ultimately about people

 Clients developers and managers Clients, developers and managers
 Project management is notoriously hard

 Circumstances tend to encourage false optimism…

© Garth Gilmour 2008

Mi tiMisconceptions

 Software development is not about maths
 Profiling your code has not been important to

mainstream developers since the early 1970’smainstream developers since the early 1970 s
 There is a strong distinction between

 Academic Computing
 Scientific Computing
 Business Computing

 Software development is not difficult Software development is not difficult
Once you obtain a core set of skills
 There are natural software developers…

© Garth Gilmour 2008

Th S ft I d tThe Software Industry

 Initially software could be developed slowly
 Computers were highly expensive
 All development was bespoke
 The time and cost was relatively inexpensive

 Development was very gradual and careful
 Because compiling code took so long

L l l d h d t b itt h j t Low level code had to be written on each project

© Garth Gilmour 2008

Th S ft I d tThe Software Industry

 Software was a victim of its own success
 Demand increased exponentially
 Hardware prices fell rapidly
 Software development took an ever increasing

percentage of costs and timepercentage of costs and time
 PC’s and the Internet accelerated the process

Operating Systems provided basic servicesOperating Systems provided basic services
We are now all developing in ‘Internet Time’

© Garth Gilmour 2008

Th O ti S tThe Operating System

 Originally computers ran a single program
With the code on punch cards

 The program was responsible for everything
 Causing huge redundancy
Only 10% of the code was unique

 Operating Systems were created to:
 Allow more than one program to be run
 Provide a core API for common tasks

© Garth Gilmour 2008

Th O ti S tThe Operating System

 The OS coordinates all activity
 Every program is allocated a process

 The resources it needs to run

Multiple copies of a program may be running
 Each will be allocated its own process Each will be allocated its own process

 A process uses the OS to perform common tasks
 These are what we refer to as ‘system calls’

 It is not necessary that an OS offer a GUI
Windows and Apple do but UNIX does not

© Garth Gilmour 2008

Th O ti S tThe Operating System

Main Memory

Process One
(Word)

Process Two
(Excel)

Process Three
(Word)() () ()

Operating System

© Garth Gilmour 2008

Th O ti S tThe Operating System

 Only one program can run at a time
 The OS allows each process a slice of time on the processor
 This happens so quickly that normally you don’t notice it This happens so quickly that normally you don t notice it…

 Processes can communicate
 A single piece of software can be made up of multiple processes

C d f OS ill t k th Code for one OS will not work on another
 Even if both OS’s run on the same hardware

 E.g. Windows and Linux on an Intel CPU

© Garth Gilmour 2008

W iti S ftWriting Software

 Instructions are written in a programming language
 These are just typed into a text file
 Many programming languages exist Many programming languages exist

 The instructions must be converted
 Into those supported by the target CPU
 This instruction set of the CPU will be very limited This instruction set of the CPU will be very limited

 The conversion process is carried out by a compiler
 A compiler and code editor are a developers basic tools

© Garth Gilmour 2008

W iti S ftWriting Software

Code 100111001101
Executables

int main() {
int a = 2;

Code

Intel Compiler

100111001101
010110010101
000101010101
001111010101
010010101101;

int b = 3;
return a*b;

} Sun Compiler

100111001101
010110010101
000101010101
001111010101001111010101
010010101101

© Garth Gilmour 2008

W iti S ftWriting Software

 Usually all the code does not live in one file
Many files are complied and then linked together into

an executable
 The linker is a separate tool

 Not all the code must be written from scratch Not all the code must be written from scratch
 Pre compiled libraries will be supplied by:

 Other teams
 Third party vendors
 The OS itself

© Garth Gilmour 2008

W iti S ftWriting Software

Executable100111001101
010110010101

100111001101100111001101

Compiled Code

100111001101
010110010101
000101010101
001111010101

Executable010110010101
000101010101
001111010101
010010101101

010110010101
000101010101
001111010101
010010101101

100111001101
010110010101
000101010101
001111010101
010010101101

100111001101
010110010101
000101010101
001111010101
010010101101

Linker
010010101101
010010101101
010010101101
010010101101
010010101101

010010101101

100111001101100111001101

3rd Party Libraries

010010101101
010010101101
010010101101
010010101101

100111001101
010110010101
000101010101
001111010101
010010101101

100111001101
010110010101
000101010101
001111010101
010010101101

100111001101
010110010101
000101010101
001111010101
010010101101

100111001101
010110010101
000101010101
001111010101
010010101101

© Garth Gilmour 2008

010010101101010010101101

B ildi S ftBuilding Software

 The source code and libraries are stored inside
a version control system

S h MS S S f R ti l Cl C Such as MS SourceSafe or Rational ClearCase
 When changes are made the affected parts of

the system are rebuiltthe system are rebuilt
 This is a highly automated process

 Builds may be made daily, weekly or monthlyy y y y
 Some builds will be for release to the client
Others will be for internal use only

© Garth Gilmour 2008

B ildi S ftBuilding Software

Version SourceVersion
Control
System

Automated
Build Process

Source
and

Libraries
Software

The latest version
of the source is

The source is
fed into the

A new executable
is produced forof the source is

checked out
fed into the
compiler and
linker in a set
order

is produced for
deployment and
testing

© Garth Gilmour 2008

B ildi S ftBuilding Software

 Each developer will have their own build
 In order to develop and test new code

 Source code files will be changed frequently
 Developers check these in and out of the VCS
 The VCS records all the changes made

 Periodically milestones are reached
 The current version of each source file is used to

create a build of the product
 This is then rigorously tested

© Garth Gilmour 2008

 This is then rigorously tested

B ildi S ftBuilding Software

 Efficient software development requires:
 A properly used version control system
 An automated build environment
 A fast and thorough test harness

 We must be able to return to a previous build
 A problem may appear in some builds only

B t t b i ti t d i t th b ild Bug reports must be investigated against the build
they appeared in, e.g. Version 3.1 SP3

© Garth Gilmour 2008

B ildi S ftBuilding Software

Source and
Libraries for Software

V i 1Milestone 1 Version 1

Source andVersion
Control
System

Automated
Build Process

Source and
Libraries for
Milestone 2

Software
Version 1.1

Source and
Libraries for
Milestone 1

Software
Version 1.2

© Garth Gilmour 2008

Milestone 1

M i S ftManaging Software

Cost Quality Time Scope

1
2

37

8
1

2

37

8
1

2

37

8
1

2

37

8

4
5

6 4
5

6 4
5

6 4
5

6

© Garth Gilmour 2008

M i S ftManaging Software

 Project management is about four variables
 These are cost, quality, time and scope
 Plus the psychological consequences of each Plus the psychological consequences of each

 Each variable has a complex relationship with the others
 Changing one has a delayed effect on the others
 It is hard to predict the time and magnitude of the effect It is hard to predict the time and magnitude of the effect

 You can only ever fix three out of four
 For example if you try to fix quality, time and scope then cost will

th h th fgo though the roof…

© Garth Gilmour 2008

M i S ft C tManaging Software: Cost
 Increasing cost can involve

 Buying faster machines with better monitors
 Providing dedicated machines and networks for testing
 Purchasing expensive development tools for build management,

automated testing, code generation etc…
 Adding new people to the project
 Allocating money for overtime Allocating money for overtime

 Extra cost isn't a panacea
 Adding people slows progress till they can be trained
 Expensive tools are typically underused Expensive tools are typically underused
 Endless overtime kills creativity
 Adding hardware has diminishing returns

© Garth Gilmour 2008

M i S ft Q litManaging Software: Quality

 Internal quality is visible only to developers
 Simple, efficient and well-documented designs and code

 External quality is what is visible to the user External quality is what is visible to the user
 This includes ‘non-techie’ issues like GUI design
 Internal quality can temporarily be reduced without any visible

effect on external qualityeffect on external quality
 Sacrificing quality is tempting but fatal in the long term

 New developers cannot understand the code
F t t b dd d ith t i b Features cannot be added without causing bugs

 Fixing reported bugs consumes most of the coding time
 Eventually it is simpler to rewrite code than maintain it

© Garth Gilmour 2008

S ft O TiSoftware Over Time
K l d i dil t d d l tKnowledge is diluted and lost
Functionality is duplicated
Architecture is compromised
Developers scared to make changes
Unexpected problems keep occurring

Q
uality

p p p g

y

V1 V2 V3 V4 V5 V6 V7

© Garth Gilmour 2008

Team A Team B Team C

M i S ft SManaging Software: Scope
 Reducing scope is the best cure for a sick project

 Unfortunately it cannot always be applied
 Projects are almost always overly ambitiousj y y

 Writing software is ‘only’ a creative activity
 Developers can be pathologically optimistic
 Promises have to be made to win contracts
 The limits of current technology aren't understood

 Features should always be prioritised to reduce scope
 What core functionality is essential to the customer?
 What can be pushed out into another release?
 What features are of limited worth to the customer yet are

producing major technical problems?

© Garth Gilmour 2008

M i S ft TiManaging Software: Time

 Increasing the available time ‘cools down’ a project in
danger of imminent meltdown
 Teams focussed on cramming in functionality for immediate Teams focussed on cramming in functionality for immediate

release loose their long term perspective and overall goals
 Continuously releasing prototypes to the client is dangerous if

the client is driving the schedule
 Realistic timescales don’t solve everything

 Some technical problems cannot be solved by extra time alone...
 E.g. requirements that are not within the teams skill-setg q

 Many projects reach 80% completeness and then stay there…

© Garth Gilmour 2008

M i S ft SManaging Software: Summary

 A project will stand every chance of success if:
 The scope is set at achievable goals
 The timescale is planned realistically The timescale is planned realistically
 HR, hardware and software is properly allocated
 Maintaining and verifying quality is kept a priority

 Most projects are some distance from the ideal Most projects are some distance from the ideal
 One or more of the dials is always set too high
 Adding time and decreasing scope is the best long term solution

Addi t hil d i lit i t ti h t t fi Adding cost while decreasing quality is a tempting short term fix

© Garth Gilmour 2008

S ft D l t & PSoftware Development & Process

 There are many formal methods for developing software
 Very few companies use them as originally intended

 The oldest is waterfall developmentp
 Which simply lines up the different activities in logical order

 Requirements → Analysis → Design → Coding → Testing
 Waterfall development is fatally flawedp y

 Unless your team only develops one type of system
 Only in step ‘B’ do you discover mistakes made during step ‘A’

 Modern methodologies stress iterative developmentg p
 Many short waterfalls rather than a single big one
 Each mini-waterfall both implements new functionality and fixes

the problems which were identified during the last one

© Garth Gilmour 2008

W t f ll D l tWaterfall Development

Business Modelling

Requirements Analysis

Systems Analysis and Designy y g

Implementation

Testing

© Garth Gilmour 2008

It ti D l tIterative Development

 Keep releases as frequent as possible
 Do ‘mini-runs’ of analysis, design, coding and testing
 Add functionality in small cycles

 2/3 weeks usually works best
 Make sure each cycle delivers completed functionality that is Make sure each cycle delivers completed functionality that is

verifiable by the client

 Don’t be concerned with web/gui design
 Work from basic simple screens
 Layer on the style once the functionality is there

© Garth Gilmour 2008

It ti D l t (RUP)Iterative Development (RUP)

Inception Elaboration Construction Transition
n

Business Modelling

Requirementsa
t
i
o
n

Requirements

Analysis and Design

Implementation

I
t
e
r
a

Testing

O
n
e

I

© Garth Gilmour 2008

O

It ti D l tIterative Development

 Prioritise use cases according to:
 Those that have value to the development team

Th th t h l t th t Those that have value to the customer
 Developers should prioritise according to

 Verticality (functional coverage) Verticality (functional coverage)
 Knowledge of the problem domain

 Customers prioritise according top g
What will earn them money
 The simplest functionality that can be deployed in the

production environment

© Garth Gilmour 2008

production environment

It ti D l tIterative Development

Iteration Plan

Requirements Analysis / Design

ImplementationTesting

Release

© Garth Gilmour 2008

It ti Pl iIterative Planning

 All planning is iterative
 Full up front planning is counterproductive

T h ‘ ti ti ’ i i l d Too much ‘guestimation’ is involved
 Each iteration is planned around

 The use cases to be implemented
 The best estimates available for development time
 A comprehensive test plan to ensure quality

 New plans are written during each iteration New plans are written during each iteration
 These need to be revised based on

 Development time actually required on the last iteration
A f ti lit th t f il d t t l ft

© Garth Gilmour 2008

 Any functionality that failed tests or was left over

It ti Pl iIterative Planning

 Negotiation and re-prioritisation are natural
consequences of iterative development
We continually revise what we have achieved and

adjust the iteration plan
We increase or reduce the scope of the currentWe increase or reduce the scope of the current

version of the project based on feedback
 Iterations prevents nasty surprises Iterations prevents nasty surprises

 Hidden problems with the technology
 Building a system the customer doesn’t want

© Garth Gilmour 2008

U C E ti tiUse Case Estimation

 You cannot replace ‘yesterdays weather’
 Sensible estimates can only be given when you have:

 A skeleton architecture
 Key vertical and business use cases

 One interim measure is ideal days One interim measure is ideal days
 ‘Pure’ development days without meetings, logistical

problems, etcp ,
 Developers naturally think in terms of ideal days

© Garth Gilmour 2008

P j t E ti tProject Estimates

 You must allow time for
 Reworking the design and code
 Studying and responding to customer feedback
 Changing requirements
 Functional and load testing
Web design and usability testing
 Logistical and network problems Logistical and network problems
 Deployment issues

© Garth Gilmour 2008

M d li S ftModeling Software

 Software spends 10% of its life in development
 The rest is spent being used, maintained and upgraded (often by

different teams of developers)p)
 The quality of software inevitably degenerates over time

 Lucky developers work on green field projects
 They are ‘plank holders’ in new systems They are plank holders in new systems
 A great opportunity for personal growth

 But also a scary amount of responsibility

 Unlucky ones work with an existing code base Unlucky ones work with an existing code base
 Similar to doing someone else's laundry
 This is the majority of developers in the industry

© Garth Gilmour 2008

M d li S ftModeling Software

 Divining the intent of foreign code is very hard
 Although you can make a good living out of it
 The ’10 foot stick’ approach The 10 foot stick approach

 The best sources of information are
 Requirements Documents
 Suites of Unit Tests Suites of Unit Tests
 Design Diagrams

 There is one current standard for modelling
 Drawing diagrams to describe software
 The Unified Modeling Language (UML)

 Created by merging several earlier standards

© Garth Gilmour 2008

Th UML DiThe UML Diagrams
Diagram Description

Use Case Provides an overview of requirements
Activity Details a flow of events (usually requirements)y (y q)
Class Defines a set of classes and relationships between them
Sequence Illustrates how messages pass between objects
Collaboration Same as above but from a different perspectiveCollaboration Same as above but from a different perspective
Object Shows the values within a set of objects
State Details the lifecycle of an object
Component Defines a set of componentsComponent Defines a set of components
Deployment Describes how components are placed in nodes

© Garth Gilmour 2008

D t il Sh O UML DiDetails Shown On UML Diagrams

 In real life diagrams start vague and become precise
 The first draft captures the essentials and is low on detail
 Subsequent drafts add detail and bring us closer to code Subsequent drafts add detail and bring us closer to code
 The final version is an accurate representation of the code

 Don’t be afraid to use the UML for ‘sketching’
 Your diagram has value as long as it clarifies your thinking Your diagram has value as long as it clarifies your thinking

 However don’t use ‘sketching’ as an excuse
 Too many projects sketch some vague UML diagrams and hope

th d t il ill t th l t i dthe details will sort themselves out in code
 This will only happen in small projects with open lines of

communication and talented and experienced developers

© Garth Gilmour 2008

Analysis Level Diagrams

Help understand the problem
Sketching a solution with few details

Large ‘chunky’ classes with many jobs

‘Spike’ Applications

Proof on concept programs that confirm
you can use a particular technology and
that it can accomplish what you require

Design Level Diagrams

Represent a possible solution
Names, signatures, relationships
Enough detail to move into coding

Implementations

The application is incrementally built over a
series of iterations, preferably with unit,

acceptance and non-functional testsoug de a o o e o cod g p

Blueprints of Code

Full detail of implementation
Notes attached to describe intentions

Stereotypes used to show usage of patterns etc…

© Garth Gilmour 2008

Stereotypes used to show usage of patterns etc…
Usually reverse engineered from completed code

