Ruby Programming

Introduction

Sample Content © Garth Gilmour 2008 garth@ggilmour.com

"
Introducing Ruby

m Ruby is a ‘3" generation’ scripting language
Shell scripting makes scripting possible
Perl makes scripting powerful and expressive
Ruby makes scripting more powerful and fun

m Ruby was invented by Yukihiro Matsumoto (aka Matz)
He designed Ruby “to make programmers happy”

m Key characteristics of Ruby are:
Complete object orientation
Dynamically typed (aka ‘Duck Typing’)
Support for functional programming
Extensible through meta-programming

November - August 2008 © Garth Gilmour 2008 garth@ggilmour.com

" J
Object Orientation in Ruby

m Everything is an object in Ruby

‘var = 7’ declares a reference to a number object

‘var = /[a-z]{3}/’ declares a reference to a ‘Regexp’ object
m Classes are simple to declare and use:

Objects are created via ‘MyClass.new’

Methods called ‘initialize’ are constructors

Fields are prefixed with the ‘@’ sigll
m Fields do not have to be pre-declared

They can be added to the object as it is used

All fields are completely hidden in the object
m This differs from ‘private’ in Java and C#

November - August 2008 © Garth Gilmour 2008 garth@ggilmour.com

refl=6
ref2=7.8
ref3 = "abc"

ref4 = [a-z]{3}/

:2:2 ; EIEIJSQexp.neW([a-z]{3}") Fixnum
refr =1 St
refé ={ Reg(gxp
puts refl.class ji> Regexp
puts ref2.class RETELE
puts ref3.class A
puts refd.class FEEN

puts ref5.class
puts ref6.class
puts ref7.class
puts ref8.class

November - August 2008 © Garth Gilmour 2008 garth@ggilmour.com

class Person pl = Person.new("Dave",27)
def initialize(name,age) p2 = Person.new("Jane",28)
@name = name
@age = age puts pl
end puts pl.inspect
defto_s pl.speak
return "#{@name} aged #{@age}"
end puts "----------- !
def speak
puts "Hi, I'm #{@name}" puts p2
end puts p2.inspect

end @ p2.speak

Dave aged 27

#<Person:0x294d1c4 @age=27, @name="Dave">
Hi, I'm Dave

Jane aged 28

#<Person:0x294d19c @age=28, @name="Jane">
Hi, I'm Jane

November - August 2008 © Garth Gilmour 2008 garth@ggilmour.com

"
Dynamic Typing

m Ruby is a dynamically typed language
As in Perl variables are not prefixed with a type
m All variables are actually references to objects

But as in Java all objects have a well defined type
= NO automatic type conversions are performed
m ‘varl + var2’ will fail if ‘varl’ is a number and ‘var2’ as string

m This is sometimes referred to as ‘Duck Typing’

The call ‘obj.func()’ will succeed if the object pointed to by ‘oby’
contains a method called ‘func’ - regardless of the class type

m If it walks like a duck and quacks like a duck then it is a duck...
This makes it very easy to write loosely-coupled code

November - August 2008 © Garth Gilmour 2008 garth@ggilmour.com

class A
defto |
return 123
end
defto f
return 45.6
end
defto_ s
return "def"
end
end

November - August 2008

¥

varl =6
var2 =7.8
var3 = "abc”
obj = A.new

varl += obj.to_i
var2 += obj.to_f
var3 += obj.to_s

puts varl
puts var2
puts var3

var4d ="101"
puts varl + var4.to_|i

129
53.4
abcdef

230

© Garth Gilmour 2008

garth@ggilmour.com

class Chess
def play
puts "Lets play a game..."

end
end pl = Player.new(Chess.new)

p2 = Player.new(Guitar.new)
class Guitar |:>
def play pl.start

puts "Lets play some music..." p2.start
end

end ‘ |

class Player

def initialize(item) Lets play a game...

@item = item Lets play some music...
end

def start
@item.play
end
end

November - August 2008 © Garth Gilmour 2008 garth@ggilmour.com

Blocks, Closures and Proc Objects

m Ruby supports closures
A closure is a code block that can be passed as a parameter

m There are three ways to create closures:
By placing a block of code after a method call
By creating an instance of the ‘Proc’ class
Via the ‘Kernel.lambda’ method

m Closures are mostly used as ‘internal iterators’
Normally you declare a loop that iterates over items

With closures you can declare methods that iterate for you
m Inside a method ‘yield’ transfers control to the closure
m A closure can have any number of parameters

November - August 2008 © Garth Gilmour 2008 garth@ggilmour.com

November - August 2008

varl =7
varl.times {{num| puts num }

var2 =5 :

var2.times do |[num|
puts num
end

© Garth Gilmour 2008

O 01l WN PO

garth@ggilmour.com

November - August 2008

data = "ab-CD-efg--HIJ--kl--MN--opq"

resultl = data.gsub(/[a-z]{3}/) {|{match| match.upcase }
result2 = data.gsub(/[A-Z]{3}/) {{match| match.downcase }

puts resultl
puts result2

8

ab-CD-EFG--H1J--kl--MN--OPQ
ab-CD-efg--hij--kl--MN--opq

© Garth Gilmour 2008

garth@ggilmour.com

puts "Enter the path to a text file...'
path = gets
path.chomp!

f = File.new(path)

puts "--- File Contents ---"
f.each_line {|line| puts line }

8

Enter the path to a text file...
~/input.txt

--- File Contents ---

line nol

line no2

line no3

line no4

line no5

November - August 2008 © Garth Gilmour 2008 garth@ggilmour.com

class A
def initialize
@values =]
end
def add(value)
@values.push(value)
end
def doSomething
for val in @values
yield val
end
end
end

November - August 2008

¥

obj = A.new
obj.add("abc")
obj.add("def")
obj.add("ghi")
obj.add("jkI")

count=0

obj.doSomething do |item|
puts "ltem #{count} is #{item}"
count+=1

end

Item O is abc
ltem 1 is def
Item 2 is ghi
Item 3 is jkI

© Garth Gilmour 2008 garth@ggilmour.com

" J
Support for Collections

m As with Perl collections are basic types

There is no need for a separate collections library
m Arrays do not have a fixed size

Specifying an out of range index causes new boxes to be added
m Hashes are very easy to work with

You can specify what value should be returned for absent keys

m Closures are used heavily in the API

Both arrays and hashes have an ‘each’ method
m This is an internal iterator, yielding to a closure for each item
m Hashes also have ‘each_key’ and ‘each_value’ methods

November - August 2008 © Garth Gilmour 2008 garth@ggilmour.com

_ --- Contents Are: --- B xx
def printArray(array) abc ab
puts "--- Contents Are: ---" def cd
array.each{|i| puts "\t #{i}" } :
end ghi &
--- Contents Are: --- wWw
arrayl =[] 27 ww
arrayl.push("abc") yy WW
arrayl << "def" XX --- Contents Are: ---
array1[2] = "ghi" ab ABC
printArray(arrayl) : cd DEE
array2 = ["ab","cd","ef"] ef sl
array2.insert(0,"zz","yy","xx") Ww 4
array2.fill("ww",6..8) ww YY
printArray(array?2) WwW XX
--- Contents Are: --- AB
arrayl.concat(array?2) abc CD
printArray(arrayl) def EE
arrayl.map!{|item| item.upcase} ghi WW
printArray(array1) ZZ WwW
yy B WW

November - August 2008 © Garth Gilmour 2008 garth@ggilmour.com

def printHash(hash)
puts "--- Contents Are ---"
hash.each do |key,value|
puts "\t #{key} indexes #{value}"
end
end --- Contents Are ---
k2 indexes v2
hashl = {{k1=>"v1", :k2=>"v2"} k1 indexes v1
printHash(hash1l) --- Contents Are ---
k2 indexes v2
hashi1[:k3] = "v3" |:> k3 indexes v3
hashl.store(:k4,"v4") k4 indexes v4
printHash(hash1l) k1 indexes v1
--- Contents Are ---
hash2 = Hash.new do |h,k]| a indexes A Value
h[k] = k.upcase + "_Value" b indexes B_Value
end c indexes C_Value
hash2["a"]
hash2["b"]
hash2["c"]
printHash(hash?2)

November - August 2008 © Garth Gilmour 2008 garth@ggilmour.com

"
Ruby’s Meta-Programming Support

m Ruby is designed to let you see ‘under the hood’
You can create abstractions and integrate them seamlessly

m In Ruby classes are executable code
The definition of each class is interpreted at runtime
A Ruby class is itself an object (an instance of ‘Class’)
Both can be extended as your program executes

m A simple example is attribute generation

The ‘attr_accessor’ method adds getter and setter methods to a
class for each field name passed as a parameter

The ‘attr_reader’ method adds getter methods only

November - August 2008 © Garth Gilmour 2008 garth@ggilmour.com

class Person
attr_reader :name
attr_accessor :age

def initialize(name,age)
@name = name Other methods
_ omitted
g@age = age 30
gn Dave
€n |:> The methods of Person are:
age
pl = Person.new("Dave",27) ag e
pl.age = 30 e
puts pl.age

puts pl.name

puts "The methods of Person are:"
for m in pl.methods

puts "\t #{m}"
end

November - August 2008 © Garth Gilmour 2008 garth@ggilmour.com

"
Ruby’s Meta-Programming Support

m The methods available from a class can be changed
New methods can be added with ‘define_method’
Inherited methods can be removed with ‘undef _method’

Overridden versions of inherited methods can be removed with
‘remove_method’, making the base version callable

m Extra methods can be added to individual objects
These are known as ‘singleton methods’

m Ruby defines ‘hooks’ for meta-programming

E.g. the ‘method_missing’ method is triggered when a call is
made to an unknown method of the current object

The default implementation throws an exception

November - August 2008 © Garth Gilmour 2008 garth@ggilmour.com

