
Ruby ProgrammingRuby Programming

Introduction

Sample Content garth@ggilmour.com© Garth Gilmour 2008

I t d i R bIntroducing Ruby
 Ruby is a ‘3rd generation’ scripting language

 Shell scripting makes scripting possible
 Perl makes scripting powerful and expressive
 Ruby makes scripting more powerful and fun

 Ruby was invented by Yukihiro Matsumoto (aka Matz)
 He designed Ruby “to make programmers happy”

 Key characteristics of Ruby are:
 Complete object orientation
 Dynamically typed (aka ‘Duck Typing’)
 Support for functional programming
 Extensible through meta-programming

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

Obj t O i t ti i R bObject Orientation in Ruby

 Everything is an object in Ruby
 ‘var = 7’ declares a reference to a number object
 ‘var = /[a-z]{3}/’ declares a reference to a ‘Regexp’ object var /[a z]{3}/ declares a reference to a Regexp object

 Classes are simple to declare and use:
 Objects are created via ‘MyClass.new’
 Methods called ‘initialize’ are constructors Methods called initialize’ are constructors
 Fields are prefixed with the ‘@’ sigil

 Fields do not have to be pre-declared
 They can be added to the object as it is used
 All fields are completely hidden in the object

 This differs from ‘private’ in Java and C#

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

ref1 = 6
ref2 = 7.8
ref3 = "abc"ref3 = abc
ref4 = /[a-z]{3}/
ref5 = Regexp.new("[a-z]{3}")
ref6 = 2..5
ref7 = []

Fixnum
Float
Stringref8 = {}

puts ref1.class
puts ref2.class
puts ref3.class

String
Regexp
Regexp
Range
Arrayputs ref3.class

puts ref4.class
puts ref5.class
puts ref6.class
puts ref7.class

t f8 l

Hash

puts ref8.class

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

class Person
def initialize(name,age)

@name = name
@age = age

p1 = Person.new("Dave",27)
p2 = Person.new("Jane",28)

puts p1@age age
end
def to_s

return "#{@name} aged #{@age}"
end
d f k

puts p1
puts p1.inspect
p1.speak

puts "-----------"
def speak

puts "Hi, I'm #{@name}"
end

end

puts p2
puts p2.inspect
p2.speak

Dave aged 27
#<Person:0x294d1c4 @age=27, @name="Dave">
Hi, I'm Dave

Jane aged 28
#<Person:0x294d19c @age=28, @name="Jane">
Hi, I'm Jane

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

D i T iDynamic Typing

 Ruby is a dynamically typed language
 As in Perl variables are not prefixed with a type

 All variables are actually references to objectsAll variables are actually references to objects
 But as in Java all objects have a well defined type

 No automatic type conversions are performed
 ‘var1 + var2’ will fail if ‘var1’ is a number and ‘var2’ as stringg

 This is sometimes referred to as ‘Duck Typing’
 The call ‘obj.func()’ will succeed if the object pointed to by ‘obj’

contains a method called ‘func’ - regardless of the class typeg yp
 If it walks like a duck and quacks like a duck then it is a duck…

 This makes it very easy to write loosely-coupled code

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

var1 = 6
var2 = 7.8
var3 = "abc“

l A obj = A.new
var1 += obj.to_i
var2 += obj.to_f
var3 += obj.to_s

class A
def to_i

return 123
end
def to f

puts var1
puts var2
puts var3

_
return 45.6

end
def to_s

return "def"
end var4 = "101"

puts var1 + var4.to_i
end

end

129129
53.4
abcdef
230

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

class Chess
def play

puts "Lets play a game..."
end

end

class Guitar
def play

p1 = Player.new(Chess.new)
p2 = Player.new(Guitar.new)

p1.startdef play
puts "Lets play some music..."

end
end

p
p2.start

class Player
def initialize(item)

@item = item
end
def start

Lets play a game...
Lets play some music...

def start
@item.play

end
end

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

Bl k Cl d P Obj tBlocks, Closures and Proc Objects

 Ruby supports closures
 A closure is a code block that can be passed as a parameter

 There are three ways to create closures: There are three ways to create closures:
 By placing a block of code after a method call
 By creating an instance of the ‘Proc’ class
 Via the ‘Kernel lambda’ method Via the Kernel.lambda’ method

 Closures are mostly used as ‘internal iterators’
 Normally you declare a loop that iterates over items
 With closures you can declare methods that iterate for you

 Inside a method ‘yield’ transfers control to the closure
 A closure can have any number of parameters

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

0

var1 = 7
var1.times {|num| puts num }

1
2
3
4

puts "------"

var2 = 5
var2.times do |num|

puts num

5
6

0

puts num
end 1

2
3
4

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

data = "ab-CD-efg--HIJ--kl--MN--opq"

result1 = data.gsub(/[a-z]{3}/) {|match| match.upcase }
result2 = data.gsub(/[A-Z]{3}/) {|match| match.downcase }

puts result1
puts result2

ab-CD-EFG--HIJ--kl--MN--OPQ
ab-CD-efg--hij--kl--MN--opq

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

puts "Enter the path to a text file..."
path = gets
path.chomp!

f = File.new(path)

puts "--- File Contents ---"
f.each_line {|line| puts line }_ {| | p }

Enter the path to a text file...
~/input.txt
--- File Contents ---
line no1
li 2line no2
line no3
line no4
line no5

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

class A
def initialize

@ l [] obj = A new@values = []
end
def add(value)

@values.push(value)
end

obj = A.new
obj.add("abc")
obj.add("def")
obj.add("ghi")
obj.add("jkl")

def doSomething
for val in @values

yield val
end

end

j (j)

count = 0
obj.doSomething do |item|

puts "Item #{count} is #{item}"
count+=1end

end
count+=1

end

Item 0 is abcItem 0 is abc
Item 1 is def
Item 2 is ghi
Item 3 is jkl

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

S t f C ll tiSupport for Collections

 As with Perl collections are basic types
 There is no need for a separate collections library

 Arrays do not have a fixed size Arrays do not have a fixed size
 Specifying an out of range index causes new boxes to be added

 Hashes are very easy to work with
 You can specify what value should be returned for absent keys

 Closures are used heavily in the API
 Both arrays and hashes have an ‘each’ methody

 This is an internal iterator, yielding to a closure for each item
 Hashes also have ‘each_key’ and ‘each_value’ methods

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

def printArray(array)
puts "--- Contents Are: ---"
array.each{|i| puts "\t #{i}" }

--- Contents Are: ---
abc
def
ghi

xx
ab
cd
efend

array1 = []
array1.push("abc")
array1 << "def"

ghi
--- Contents Are: ---

zz
yy
xx

ef
ww
ww
ww

Contents Are:array1 def
array1[2] = "ghi"
printArray(array1)

array2 = ["ab","cd","ef"]
2 i t(0 " " " " " ")

xx
ab
cd
ef
ww

--- Contents Are: ---
ABC
DEF
GHI
ZZarray2.insert(0,"zz","yy","xx")

array2.fill("ww",6..8)
printArray(array2)

array1.concat(array2)

ww
ww
ww

--- Contents Are: ---
abc

ZZ
YY
XX
AB
CDy (y)

printArray(array1)

array1.map!{|item| item.upcase}
printArray(array1)

abc
def
ghi
zz
yy

CD
EF
WW
WW
WW

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

yy WW

def printHash(hash)
puts "--- Contents Are ---"
hash.each do |key,value|

puts "\t #{key} indexes #{value}" p { y} { }
end

end

hash1 = {:k1=>"v1", :k2=>"v2"}
printHash(hash1)

--- Contents Are ---
k2 indexes v2
k1 indexes v1

C t t AprintHash(hash1)

hash1[:k3] = "v3"
hash1.store(:k4,"v4")
printHash(hash1)

--- Contents Are ---
k2 indexes v2
k3 indexes v3
k4 indexes v4
k1 indexes v1

hash2 = Hash.new do |h,k|
h[k] = k.upcase + "_Value"

end

--- Contents Are ---
a indexes A_Value
b indexes B_Value
c indexes C_Value

hash2["a"]
hash2["b"]
hash2["c"]
printHash(hash2)

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

R b ’ M t P i S tRuby’s Meta-Programming Support

 Ruby is designed to let you see ‘under the hood’
 You can create abstractions and integrate them seamlessly

 In Ruby classes are executable code In Ruby classes are executable code
 The definition of each class is interpreted at runtime
 A Ruby class is itself an object (an instance of ‘Class’)
 Both can be extended as your program executes Both can be extended as your program executes

 A simple example is attribute generation
 The ‘attr_accessor’ method adds getter and setter methods to a

l f h fi ld d tclass for each field name passed as a parameter
 The ‘attr_reader’ method adds getter methods only

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

class Person
attr_reader :name
attr_accessor :age

def initialize(name,age)
@name = name
@age = age

end
30
Dave

Other methods
omitted

end

p1 = Person.new("Dave",27)
p1.age = 30

Dave
The methods of Person are:

age
age=
name

puts p1.age
puts p1.name

puts "The methods of Person are:"
for m in p1.methods

puts "\t #{m}"
end

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

R b ’ M t P i S tRuby’s Meta-Programming Support

 The methods available from a class can be changed
 New methods can be added with ‘define_method’
 Inherited methods can be removed with ‘undef method’ Inherited methods can be removed with undef_method
 Overridden versions of inherited methods can be removed with

‘remove_method’, making the base version callable
 Extra methods can be added to individual objects Extra methods can be added to individual objects

 These are known as ‘singleton methods’
 Ruby defines ‘hooks’ for meta-programming

E th ‘ th d i i ’ th d i t i d h ll i E.g. the ‘method_missing’ method is triggered when a call is
made to an unknown method of the current object

 The default implementation throws an exception

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

