
Ruby ProgrammingRuby Programming

Introduction

Sample Content garth@ggilmour.com© Garth Gilmour 2008

I t d i R bIntroducing Ruby
 Ruby is a ‘3rd generation’ scripting language

 Shell scripting makes scripting possible
 Perl makes scripting powerful and expressive
 Ruby makes scripting more powerful and fun

 Ruby was invented by Yukihiro Matsumoto (aka Matz)
 He designed Ruby “to make programmers happy”

 Key characteristics of Ruby are:
 Complete object orientation
 Dynamically typed (aka ‘Duck Typing’)
 Support for functional programming
 Extensible through meta-programming

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

Obj t O i t ti i R bObject Orientation in Ruby

 Everything is an object in Ruby
 ‘var = 7’ declares a reference to a number object
 ‘var = /[a-z]{3}/’ declares a reference to a ‘Regexp’ object var /[a z]{3}/ declares a reference to a Regexp object

 Classes are simple to declare and use:
 Objects are created via ‘MyClass.new’
 Methods called ‘initialize’ are constructors Methods called initialize’ are constructors
 Fields are prefixed with the ‘@’ sigil

 Fields do not have to be pre-declared
 They can be added to the object as it is used
 All fields are completely hidden in the object

 This differs from ‘private’ in Java and C#

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

ref1 = 6
ref2 = 7.8
ref3 = "abc"ref3 = abc
ref4 = /[a-z]{3}/
ref5 = Regexp.new("[a-z]{3}")
ref6 = 2..5
ref7 = []

Fixnum
Float
Stringref8 = {}

puts ref1.class
puts ref2.class
puts ref3.class

String
Regexp
Regexp
Range
Arrayputs ref3.class

puts ref4.class
puts ref5.class
puts ref6.class
puts ref7.class

t f8 l

Hash

puts ref8.class

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

class Person
def initialize(name,age)

@name = name
@age = age

p1 = Person.new("Dave",27)
p2 = Person.new("Jane",28)

puts p1@age age
end
def to_s

return "#{@name} aged #{@age}"
end
d f k

puts p1
puts p1.inspect
p1.speak

puts "-----------"
def speak

puts "Hi, I'm #{@name}"
end

end

puts p2
puts p2.inspect
p2.speak

Dave aged 27
#<Person:0x294d1c4 @age=27, @name="Dave">
Hi, I'm Dave

Jane aged 28
#<Person:0x294d19c @age=28, @name="Jane">
Hi, I'm Jane

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

D i T iDynamic Typing

 Ruby is a dynamically typed language
 As in Perl variables are not prefixed with a type

 All variables are actually references to objectsAll variables are actually references to objects
 But as in Java all objects have a well defined type

 No automatic type conversions are performed
 ‘var1 + var2’ will fail if ‘var1’ is a number and ‘var2’ as stringg

 This is sometimes referred to as ‘Duck Typing’
 The call ‘obj.func()’ will succeed if the object pointed to by ‘obj’

contains a method called ‘func’ - regardless of the class typeg yp
 If it walks like a duck and quacks like a duck then it is a duck…

 This makes it very easy to write loosely-coupled code

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

var1 = 6
var2 = 7.8
var3 = "abc“

l A obj = A.new
var1 += obj.to_i
var2 += obj.to_f
var3 += obj.to_s

class A
def to_i

return 123
end
def to f

puts var1
puts var2
puts var3

_
return 45.6

end
def to_s

return "def"
end var4 = "101"

puts var1 + var4.to_i
end

end

129129
53.4
abcdef
230

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

class Chess
def play

puts "Lets play a game..."
end

end

class Guitar
def play

p1 = Player.new(Chess.new)
p2 = Player.new(Guitar.new)

p1.startdef play
puts "Lets play some music..."

end
end

p
p2.start

class Player
def initialize(item)

@item = item
end
def start

Lets play a game...
Lets play some music...

def start
@item.play

end
end

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

Bl k Cl d P Obj tBlocks, Closures and Proc Objects

 Ruby supports closures
 A closure is a code block that can be passed as a parameter

 There are three ways to create closures: There are three ways to create closures:
 By placing a block of code after a method call
 By creating an instance of the ‘Proc’ class
 Via the ‘Kernel lambda’ method Via the Kernel.lambda’ method

 Closures are mostly used as ‘internal iterators’
 Normally you declare a loop that iterates over items
 With closures you can declare methods that iterate for you

 Inside a method ‘yield’ transfers control to the closure
 A closure can have any number of parameters

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

0

var1 = 7
var1.times {|num| puts num }

1
2
3
4

puts "------"

var2 = 5
var2.times do |num|

puts num

5
6

0

puts num
end 1

2
3
4

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

data = "ab-CD-efg--HIJ--kl--MN--opq"

result1 = data.gsub(/[a-z]{3}/) {|match| match.upcase }
result2 = data.gsub(/[A-Z]{3}/) {|match| match.downcase }

puts result1
puts result2

ab-CD-EFG--HIJ--kl--MN--OPQ
ab-CD-efg--hij--kl--MN--opq

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

puts "Enter the path to a text file..."
path = gets
path.chomp!

f = File.new(path)

puts "--- File Contents ---"
f.each_line {|line| puts line }_ {| | p }

Enter the path to a text file...
~/input.txt
--- File Contents ---
line no1
li 2line no2
line no3
line no4
line no5

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

class A
def initialize

@ l [] obj = A new@values = []
end
def add(value)

@values.push(value)
end

obj = A.new
obj.add("abc")
obj.add("def")
obj.add("ghi")
obj.add("jkl")

def doSomething
for val in @values

yield val
end

end

j (j)

count = 0
obj.doSomething do |item|

puts "Item #{count} is #{item}"
count+=1end

end
count+=1

end

Item 0 is abcItem 0 is abc
Item 1 is def
Item 2 is ghi
Item 3 is jkl

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

S t f C ll tiSupport for Collections

 As with Perl collections are basic types
 There is no need for a separate collections library

 Arrays do not have a fixed size Arrays do not have a fixed size
 Specifying an out of range index causes new boxes to be added

 Hashes are very easy to work with
 You can specify what value should be returned for absent keys

 Closures are used heavily in the API
 Both arrays and hashes have an ‘each’ methody

 This is an internal iterator, yielding to a closure for each item
 Hashes also have ‘each_key’ and ‘each_value’ methods

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

def printArray(array)
puts "--- Contents Are: ---"
array.each{|i| puts "\t #{i}" }

--- Contents Are: ---
abc
def
ghi

xx
ab
cd
efend

array1 = []
array1.push("abc")
array1 << "def"

ghi
--- Contents Are: ---

zz
yy
xx

ef
ww
ww
ww

Contents Are:array1 def
array1[2] = "ghi"
printArray(array1)

array2 = ["ab","cd","ef"]
2 i t(0 " " " " " ")

xx
ab
cd
ef
ww

--- Contents Are: ---
ABC
DEF
GHI
ZZarray2.insert(0,"zz","yy","xx")

array2.fill("ww",6..8)
printArray(array2)

array1.concat(array2)

ww
ww
ww

--- Contents Are: ---
abc

ZZ
YY
XX
AB
CDy (y)

printArray(array1)

array1.map!{|item| item.upcase}
printArray(array1)

abc
def
ghi
zz
yy

CD
EF
WW
WW
WW

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

yy WW

def printHash(hash)
puts "--- Contents Are ---"
hash.each do |key,value|

puts "\t #{key} indexes #{value}" p { y} { }
end

end

hash1 = {:k1=>"v1", :k2=>"v2"}
printHash(hash1)

--- Contents Are ---
k2 indexes v2
k1 indexes v1

C t t AprintHash(hash1)

hash1[:k3] = "v3"
hash1.store(:k4,"v4")
printHash(hash1)

--- Contents Are ---
k2 indexes v2
k3 indexes v3
k4 indexes v4
k1 indexes v1

hash2 = Hash.new do |h,k|
h[k] = k.upcase + "_Value"

end

--- Contents Are ---
a indexes A_Value
b indexes B_Value
c indexes C_Value

hash2["a"]
hash2["b"]
hash2["c"]
printHash(hash2)

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

R b ’ M t P i S tRuby’s Meta-Programming Support

 Ruby is designed to let you see ‘under the hood’
 You can create abstractions and integrate them seamlessly

 In Ruby classes are executable code In Ruby classes are executable code
 The definition of each class is interpreted at runtime
 A Ruby class is itself an object (an instance of ‘Class’)
 Both can be extended as your program executes Both can be extended as your program executes

 A simple example is attribute generation
 The ‘attr_accessor’ method adds getter and setter methods to a

l f h fi ld d tclass for each field name passed as a parameter
 The ‘attr_reader’ method adds getter methods only

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

class Person
attr_reader :name
attr_accessor :age

def initialize(name,age)
@name = name
@age = age

end
30
Dave

Other methods
omitted

end

p1 = Person.new("Dave",27)
p1.age = 30

Dave
The methods of Person are:

age
age=
name

puts p1.age
puts p1.name

puts "The methods of Person are:"
for m in p1.methods

puts "\t #{m}"
end

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

R b ’ M t P i S tRuby’s Meta-Programming Support

 The methods available from a class can be changed
 New methods can be added with ‘define_method’
 Inherited methods can be removed with ‘undef method’ Inherited methods can be removed with undef_method
 Overridden versions of inherited methods can be removed with

‘remove_method’, making the base version callable
 Extra methods can be added to individual objects Extra methods can be added to individual objects

 These are known as ‘singleton methods’
 Ruby defines ‘hooks’ for meta-programming

E th ‘ th d i i ’ th d i t i d h ll i E.g. the ‘method_missing’ method is triggered when a call is
made to an unknown method of the current object

 The default implementation throws an exception

November - August 2008 garth@ggilmour.com© Garth Gilmour 2008

