
The Logical ViewThe Logical View

Part Two - Structure

garth@ggilmour.comSample Content © Garth Gilmour 2008

Th St ti L i l ViThe Static Logical View
 The dynamic logical view determines the static

 You discover what classes are required when you try to
implement flow of events on interaction diagrams
A l h ld l b i th d i if it l ithi th A class should only be in the design if it serves a role within the
realizations of one or more Use Cases

 If objects interact their classes must be related
 The UML defines six standard relationships The UML defines six standard relationships
 These are interpreted according to your language

 The system structure is shown on Class Diagrams
 A single Class Diagram would typically be too large to use A single Class Diagram would typically be too large to use
 We draw Class Diagrams for different parts of the system

 This are called ‘View Of Participating Class’ diagrams (VOPC)

© Garth Gilmour 2008

R ti ClRepresenting Classes

 Classes are drawn as rectangles
 Each rectangle has three compartments

 The class name and package
 The fields of the class

 Attributes in UML terminologygy
 The methods of the class

 Operations in UML terminology

 Compartments may be omitted on some diagrams Compartments may be omitted on some diagrams
 Depending on the level of detail required

© Garth Gilmour 2008

R ti ClRepresenting Classes

Employee
(com.megacorp.payroll)

Employee
(com.megacorp.payroll)

name : String
age : Integer
salary : Double

()

Employee
(com.megacorp.payroll)

promote()
awardBonus(bonus : Double)
isPayday() : Boolean
calcSalary() : Double

S i () S i

promote()
awardBonus(bonus : Double)
isPayday() : Boolean
calcSalary() : DoubletoString() : String

equals(other : Object) : Boolean

calcSalary() : Double
toString() : String
equals(other : Object) : Boolean

© Garth Gilmour 2008

R ti ClRepresenting Classes

 Classes are specialised with stereotypes
Which take the form of ‘<< stereotype name >>’

St t tt h t UML l t Stereotypes can attach to any UML element
 The interface stereotype is the most used

 It describes a class that defines operations but is without
attributes or any implementation

 This maps directly to the interface type in Java and C#
 In C++ this maps to a class with only pure virtual functions

 During analysis the MVC pattern is often used
 Classes are marked as boundary, control or entity

© Garth Gilmour 2008

St t d Cl DiStereotypes and Class Diagrams
<<Control>>

FlexiTimeMonitor
<<Interface>>
WageEarner

<<Entity>>
Person

<<Boundary>>
PersonnelDB

<<Entity>>
Employee

<<Entity>>
DepartmentEmployee Department

© Garth Gilmour 2008

Cl Di f th ATM S tClass Diagram for the ATM System

© Garth Gilmour 2008

R ti P kRepresenting Packages

 Every class belongs to a package
 Packages are a generic grouping construct

Th t i t d t They can contain use cases, actors, nodes etc…
 Packages of classes organise the architecture

 Cooperating classes are put in the same package
 Packages can themselves be contained in a package
 At the highest level every layer of the system is a package

 Packages do not have a diagram of their own Packages do not have a diagram of their own
 Class diagrams may show all classes in packages
 Packages map to namespaces in C++

© Garth Gilmour 2008

<<Layer>> User Interfaces

Java FX Rich ClientJSF Web ApplicationSwing GUI

<<Layer>> Business Logic and Database Access

EJB3 Session BeansWeb Services

JTA Enabled
Domain Model

© Garth Gilmour 2008

P k U d I J d NETPackages Used In Java and .NET

java.sql System.Data

java lang java io S t S t IOjava.lang java.io System System.IO

java.net System.Net

© Garth Gilmour 2008

St t l R l ti hi d UMLStructural Relationships and UML

 UML defines 6 kinds of relationships
 These mainly exist between classes but also between

packages, actors and use casesp g ,
 Note that not all OO programming languages offer each of

these relationships and every language uses them differently
 The relationships are shown on the next slide:p

1. Generalization
2. Realization
3. Dependency
4. Association
5. Aggregation
6. Composition

© Garth Gilmour 2008

St t l R l ti hi d UMLStructural Relationships and UML

3

4

2

5

1
2

6

© Garth Gilmour 2008

G li tiGeneralization

 Generalization is the UML term for inheritance
 The relationship always means ‘IS A KIND OF’

 Generalization in classes has already been discussed Generalization in classes has already been discussed
 Remember that private members may be inherited but are not

accessible (except indirectly through helper functions)
 Some languages support different kinds of inheritance Some languages support different kinds of inheritance

 The generalization relationship can be marked with ‘<<private>>’
or ‘<<protected>>’ when using specialized inheritance in C++
 Note that using this C++ feature is no longer recommended Note that using this C++ feature is no longer recommended

 Actors can also use generalization
 To show that two actors initiate a common set of Use Cases

© Garth Gilmour 2008

G li ti I ClGeneralization In Classes
public class Person {

private String name;
private int age;
public Person(String name, int age) {

Person
name : String

i t p (g , g) {
this.name = name;
this.age = age;

}
}

age : int

Person(String,int)

public class Employee extends Person {
private double salary;
public Employee(String name, int age, double salary) {

super(name age);

Employee
salary : double

super(name,age);
this.salary = salary;

}
}

Employee(String,int,double)

© Garth Gilmour 2008

G li ti I A tGeneralization In Actors
Run Program

List Files

User
Create Files

Install Programs

Create Folders

Power-User

Admin

Schedule Jobs

© Garth Gilmour 2008

Power User

R li tiRealization

 Realization is when an interface is generalized
 A class is inheriting a set of methods without any implementation

 Java interfaces can also contain constantsJava interfaces can also contain constants
 This is best thought of as fulfilling a contract

 By realizing the interface you are promising to clients that you will
properly implement the operations

 What properly means must be defined for each interface

 Packages are allowed to realize interfaces
 This means that the classes within the package cooperate to p g p

implement the operations in the interface
 Such an arrangement always evolves into a component

© Garth Gilmour 2008

R li tiRealization
DBTransaction

<<Interface>>
Transaction

DBTransaction

Transaction
enlist(r:Resource)

setRollbackOnly
commit

public interface Transaction {
public void enlist(Resource r);

Transaction

enlist(r:Resource)
commit
rollback
setRollbackOnly

commit
rollback

public void commit();
public void rolback();
public void setRollbackOnly();

}

DBT ti

setRollbackOnly

DBTransaction
public class DBTransaction

implements Transaction {
// Code omitted

}

© Garth Gilmour 2008

A i tiAssociation

 Association is the most common relationship
 It models a permanent link between classes
 The link is made when the object is constructed The link is made when the object is constructed

 Or deferred until a client calls a ‘setter’ method

 Only significant associations are modelled
 We don't model links to built in classes like ‘Date’ and ‘String’ We don t model links to built in classes like Date and String
 Associations are only drawn for classes which are also part of

the system or whose members are important
 Modelling tools will automatically reverse engineer libraries Modelling tools will automatically reverse engineer libraries

 An object should not set its own associations
 Allowing a client to set them facilitates unit testing

© Garth Gilmour 2008

A i tiAssociation
Person

name : String
birthDate : Date

Person(String,Date,Address)

Address
address

public class Person {

Person(String,Date,Address)

private String name;
private Date birthDate;
private Address address;
public Person(String name, Date birthDate,

Address address) {Address address) {
this.name = name;
this.birthDate = birthDate;
this.address = address;

}
}

© Garth Gilmour 2008

}

String

We could also model the Person class as below.
But it would not be appropriate as Address,
and only Address, is architecturally significant

Person
Address

St g
name

and only Address, is architecturally significant

//ALL FIELDS SPECIFIED
VIA ASSOCIATIONS

Person(String,Date,Address)

Address
address

DateDate
birthDate

Person
name : String
birthDate : Date
address : Address

Person(String,Date,Address)

© Garth Gilmour 2008

A ti d C itiAggregation and Composition

 There are two stronger types of association
 These have no direct mapping in the Java language
 However they may emerge in your design However they may emerge in your design

 Aggregation models a whole-part association
 The whole is not complete without the parts
 What ‘complete’ means is somewhat nebulous What complete’ means is somewhat nebulous
 It can be important when mapping to the database

 Composition represents coincident lifetimes
 The parts do not survive the destruction of the whole
 Composition requires non-shared aggregation

 Otherwise the whole could not safely delete its parts

© Garth Gilmour 2008

A ti d C itiAggregation and Composition

Person
name : String
birthDate : Date

Address
address

Person(String,Date,Address)

Aggregation

Person
name : String
birthDate : Date

Person(String Date Address)

Address
address

Person(String,Date,Address)

Composition

© Garth Gilmour 2008

D dDependency

 Dependency is a lighter form of association
 It describes a short term ‘using’ relationship
 As with association we only model significant relationships As with association we only model significant relationships

 Class A has a dependency to class B if:
 An method of A is passed a B object as a parameter
 An method of A declares a B object as a local variable An method of A declares a B object as a local variable
 A uses a global instance of B (public and static in Java)

 Dependency is usually preferable to association
 Unless one class makes very heavy use of the other
 In general relationships should be as lightweight as possible

© Garth Gilmour 2008

D dDependency Bonus

Employee

award(bonus : Bonus)
changeDept(dept : Department)

Department

changeDept(dept : Department)
getCode() : TaxCode
calculateSalary() : double

TaxCode

C l l t
public class Employee {

public void award(Bonus bonus) { … }
public void changeDept(Department dept) { … }
public TaxCode getCode() { … }

S () {

Calculator

public double calculateSalary() {
Calculator calc = new Calculator();
…

}
}

© Garth Gilmour 2008

}

D d i B t P kDependencies Between Packages

 Packages can be dependant on one another
 If one or more classes in a package use one or more

classes in another then there is a dependencyclasses in another then there is a dependency
 Packages representing layers are dependant on the

services provided by the layer below

com megacorp gui

javax.swing

com.megacorp.gui

java.awt

com.megacorp.logic

© Garth Gilmour 2008

g p g

D d i B t P kDependencies Between Packages

© Garth Gilmour 2008

R l ti hi S (i J)Relationships Summary (in Java)
<<Interface>>

Person
<<Interface>>

Payable

pay()

Employee

Job

id : String

bli l E l d P i l P bl {

allocateJob(work : Job)
pay() Department

dept

id : String

public class Employee extends Person implements Payable {
private Department dept;
private String id;
public void allocateJob(Job work) { … }
public void pay() { … }

© Garth Gilmour 2008

pub c o d pay() { }
}

R l ti hi S (i C#)Relationships Summary (using C#)
<<Interface>>

Person
<<Interface>>

Payable

pay()

Employee

Job

id : String

bli l E l P P bl {

allocateJob(work : Job)
pay() Department

dept

id : String

public class Employee : Person, Payable {
private Department dept;
private string id;
public void allocateJob(Job work) { … }
public void pay() { … }

© Garth Gilmour 2008

pub c o d pay() { }
}

D t ili R l ti hiDetailing Relationships
 Every relationship needs to have

 A direction of navigation
 A multiplicity at each end

 Most relationships should have
 An appropriate name
 A name for the major role

 Initially these are left out
 In a finished design they need to be present
 Incrementally or via reverse engineering

 The level of detail depends on usage
 In particular who will consume the UML

© Garth Gilmour 2008

N i R l ti hiNaming Relationships

 Relationships can be named
 This has no effect on the generated code but greatly increases

the readability of the diagramy g
 An arrowhead indicates how the name should be read

 For straightforward relationships this is not required
 But for industry specific terms it is very important But for industry specific terms it is very important

Person
addresslives at

Address

Position
stockheld on

Stock

© Garth Gilmour 2008

N i ti R l ti hi d R lNavigating Relationships and Roles

 Navigation is the direction relationships work in
 As indicated by an open arrowhead

 The arrow shows which object uses the other The arrow shows which object uses the other
 In an association this will be via a field
 In a dependency this will be via a parameter etc…

N th t b th d No arrows means the same as arrows at both ends
 This is to be avoided unless absolutely necessary
 Bidirectional navigation increases complexity and coupling

 In associations a role name is placed by the arrow
 This will be the name of the field in the generated code

© Garth Gilmour 2008

N i ti R l ti hi d R lNavigating Relationships and Roles
public class A {

private B ref;
}
public class B { }

A ref B

public class A { }
public class B {

private A ref;
A ref B

}

public class A { A ref1 Bref2
private B ref1;

}
public class B {

private A ref2;
}

A ref1 Bref2

© Garth Gilmour 2008

}

N i ti d M lti li itNavigation and Multiplicity

 Multiplicity shows the number or range of objects that
participate in either side of the relationship
 Represented as a single number or a range Represented as a single number or a range

 For example 0,1,0..3,4..16,*,1..*

 The values chosen affect the design of the class
 Multiplicities of 1 can be represented as a reference Multiplicities of 1 can be represented as a reference
 Multiplicities greater than 1 require an array or a collection

 If the multiplicity is 0 then the link may not be present
C d f ll f Code must test for null references etc…

© Garth Gilmour 2008

N i ti d M lti li itNavigation and Multiplicity
public class A {

private B ref;
}
public class B { }

A ref B
1

public class A {
private B [] ref = new B[4];

}
A ref B

0 4}
public class B { }

0..4

public class A {
A B//Holds B objects

private List ref = new ArrayList();
}
public class B { }

A ref B
0..*

© Garth Gilmour 2008

Sh i N i ti d M lti li itShowing Navigation and Multiplicity

© Garth Gilmour 2008

U l R l ti hiUnusual Relationships

 A class may have multiple relationships with another
 If the other class is used in several different ways

 A class may have a relationships to itself A class may have a relationships to itself
 If an object has references to other instances of the same class

bli l P {public class Person {
private Address home;
private Address work;

}

Person Addresshome

work

public class Node {
private Node next;
private Node previous;

}

Node

© Garth Gilmour 2008

} next
0..1

previous
0..1

D t il d R l ti hi SDetailed Relationships Summary
<<Interface>>

Person
<<Interface>>

Payable

pay()

Employee
DepartmentJob deptid St i works inIs allocated

allocateJob(work : Job)
pay()

pdeptid : String works inIs allocated

120..*

public class Employee extends Person implements Payable {
private Department dept;
private String id;
public void allocateJob(Job work) { … }

bli id () { }

© Garth Gilmour 2008

public void pay() { … }
}

