
The Logical ViewThe Logical View

Part Two - Structure

garth@ggilmour.comSample Content © Garth Gilmour 2008

Th St ti L i l ViThe Static Logical View
 The dynamic logical view determines the static

 You discover what classes are required when you try to
implement flow of events on interaction diagrams
A l h ld l b i th d i if it l ithi th A class should only be in the design if it serves a role within the
realizations of one or more Use Cases

 If objects interact their classes must be related
 The UML defines six standard relationships The UML defines six standard relationships
 These are interpreted according to your language

 The system structure is shown on Class Diagrams
 A single Class Diagram would typically be too large to use A single Class Diagram would typically be too large to use
 We draw Class Diagrams for different parts of the system

 This are called ‘View Of Participating Class’ diagrams (VOPC)

© Garth Gilmour 2008

R ti ClRepresenting Classes

 Classes are drawn as rectangles
 Each rectangle has three compartments

 The class name and package
 The fields of the class

 Attributes in UML terminologygy
 The methods of the class

 Operations in UML terminology

 Compartments may be omitted on some diagrams Compartments may be omitted on some diagrams
 Depending on the level of detail required

© Garth Gilmour 2008

R ti ClRepresenting Classes

Employee
(com.megacorp.payroll)

Employee
(com.megacorp.payroll)

name : String
age : Integer
salary : Double

()

Employee
(com.megacorp.payroll)

promote()
awardBonus(bonus : Double)
isPayday() : Boolean
calcSalary() : Double

S i () S i

promote()
awardBonus(bonus : Double)
isPayday() : Boolean
calcSalary() : DoubletoString() : String

equals(other : Object) : Boolean

calcSalary() : Double
toString() : String
equals(other : Object) : Boolean

© Garth Gilmour 2008

R ti ClRepresenting Classes

 Classes are specialised with stereotypes
Which take the form of ‘<< stereotype name >>’

St t tt h t UML l t Stereotypes can attach to any UML element
 The interface stereotype is the most used

 It describes a class that defines operations but is without
attributes or any implementation

 This maps directly to the interface type in Java and C#
 In C++ this maps to a class with only pure virtual functions

 During analysis the MVC pattern is often used
 Classes are marked as boundary, control or entity

© Garth Gilmour 2008

St t d Cl DiStereotypes and Class Diagrams
<<Control>>

FlexiTimeMonitor
<<Interface>>
WageEarner

<<Entity>>
Person

<<Boundary>>
PersonnelDB

<<Entity>>
Employee

<<Entity>>
DepartmentEmployee Department

© Garth Gilmour 2008

Cl Di f th ATM S tClass Diagram for the ATM System

© Garth Gilmour 2008

R ti P kRepresenting Packages

 Every class belongs to a package
 Packages are a generic grouping construct

Th t i t d t They can contain use cases, actors, nodes etc…
 Packages of classes organise the architecture

 Cooperating classes are put in the same package
 Packages can themselves be contained in a package
 At the highest level every layer of the system is a package

 Packages do not have a diagram of their own Packages do not have a diagram of their own
 Class diagrams may show all classes in packages
 Packages map to namespaces in C++

© Garth Gilmour 2008

<<Layer>> User Interfaces

Java FX Rich ClientJSF Web ApplicationSwing GUI

<<Layer>> Business Logic and Database Access

EJB3 Session BeansWeb Services

JTA Enabled
Domain Model

© Garth Gilmour 2008

P k U d I J d NETPackages Used In Java and .NET

java.sql System.Data

java lang java io S t S t IOjava.lang java.io System System.IO

java.net System.Net

© Garth Gilmour 2008

St t l R l ti hi d UMLStructural Relationships and UML

 UML defines 6 kinds of relationships
 These mainly exist between classes but also between

packages, actors and use casesp g ,
 Note that not all OO programming languages offer each of

these relationships and every language uses them differently
 The relationships are shown on the next slide:p

1. Generalization
2. Realization
3. Dependency
4. Association
5. Aggregation
6. Composition

© Garth Gilmour 2008

St t l R l ti hi d UMLStructural Relationships and UML

3

4

2

5

1
2

6

© Garth Gilmour 2008

G li tiGeneralization

 Generalization is the UML term for inheritance
 The relationship always means ‘IS A KIND OF’

 Generalization in classes has already been discussed Generalization in classes has already been discussed
 Remember that private members may be inherited but are not

accessible (except indirectly through helper functions)
 Some languages support different kinds of inheritance Some languages support different kinds of inheritance

 The generalization relationship can be marked with ‘<<private>>’
or ‘<<protected>>’ when using specialized inheritance in C++
 Note that using this C++ feature is no longer recommended Note that using this C++ feature is no longer recommended

 Actors can also use generalization
 To show that two actors initiate a common set of Use Cases

© Garth Gilmour 2008

G li ti I ClGeneralization In Classes
public class Person {

private String name;
private int age;
public Person(String name, int age) {

Person
name : String

i t p (g , g) {
this.name = name;
this.age = age;

}
}

age : int

Person(String,int)

public class Employee extends Person {
private double salary;
public Employee(String name, int age, double salary) {

super(name age);

Employee
salary : double

super(name,age);
this.salary = salary;

}
}

Employee(String,int,double)

© Garth Gilmour 2008

G li ti I A tGeneralization In Actors
Run Program

List Files

User
Create Files

Install Programs

Create Folders

Power-User

Admin

Schedule Jobs

© Garth Gilmour 2008

Power User

R li tiRealization

 Realization is when an interface is generalized
 A class is inheriting a set of methods without any implementation

 Java interfaces can also contain constantsJava interfaces can also contain constants
 This is best thought of as fulfilling a contract

 By realizing the interface you are promising to clients that you will
properly implement the operations

 What properly means must be defined for each interface

 Packages are allowed to realize interfaces
 This means that the classes within the package cooperate to p g p

implement the operations in the interface
 Such an arrangement always evolves into a component

© Garth Gilmour 2008

R li tiRealization
DBTransaction

<<Interface>>
Transaction

DBTransaction

Transaction
enlist(r:Resource)

setRollbackOnly
commit

public interface Transaction {
public void enlist(Resource r);

Transaction

enlist(r:Resource)
commit
rollback
setRollbackOnly

commit
rollback

public void commit();
public void rolback();
public void setRollbackOnly();

}

DBT ti

setRollbackOnly

DBTransaction
public class DBTransaction

implements Transaction {
// Code omitted

}

© Garth Gilmour 2008

A i tiAssociation

 Association is the most common relationship
 It models a permanent link between classes
 The link is made when the object is constructed The link is made when the object is constructed

 Or deferred until a client calls a ‘setter’ method

 Only significant associations are modelled
 We don't model links to built in classes like ‘Date’ and ‘String’ We don t model links to built in classes like Date and String
 Associations are only drawn for classes which are also part of

the system or whose members are important
 Modelling tools will automatically reverse engineer libraries Modelling tools will automatically reverse engineer libraries

 An object should not set its own associations
 Allowing a client to set them facilitates unit testing

© Garth Gilmour 2008

A i tiAssociation
Person

name : String
birthDate : Date

Person(String,Date,Address)

Address
address

public class Person {

Person(String,Date,Address)

private String name;
private Date birthDate;
private Address address;
public Person(String name, Date birthDate,

Address address) {Address address) {
this.name = name;
this.birthDate = birthDate;
this.address = address;

}
}

© Garth Gilmour 2008

}

String

We could also model the Person class as below.
But it would not be appropriate as Address,
and only Address, is architecturally significant

Person
Address

St g
name

and only Address, is architecturally significant

//ALL FIELDS SPECIFIED
VIA ASSOCIATIONS

Person(String,Date,Address)

Address
address

DateDate
birthDate

Person
name : String
birthDate : Date
address : Address

Person(String,Date,Address)

© Garth Gilmour 2008

A ti d C itiAggregation and Composition

 There are two stronger types of association
 These have no direct mapping in the Java language
 However they may emerge in your design However they may emerge in your design

 Aggregation models a whole-part association
 The whole is not complete without the parts
 What ‘complete’ means is somewhat nebulous What complete’ means is somewhat nebulous
 It can be important when mapping to the database

 Composition represents coincident lifetimes
 The parts do not survive the destruction of the whole
 Composition requires non-shared aggregation

 Otherwise the whole could not safely delete its parts

© Garth Gilmour 2008

A ti d C itiAggregation and Composition

Person
name : String
birthDate : Date

Address
address

Person(String,Date,Address)

Aggregation

Person
name : String
birthDate : Date

Person(String Date Address)

Address
address

Person(String,Date,Address)

Composition

© Garth Gilmour 2008

D dDependency

 Dependency is a lighter form of association
 It describes a short term ‘using’ relationship
 As with association we only model significant relationships As with association we only model significant relationships

 Class A has a dependency to class B if:
 An method of A is passed a B object as a parameter
 An method of A declares a B object as a local variable An method of A declares a B object as a local variable
 A uses a global instance of B (public and static in Java)

 Dependency is usually preferable to association
 Unless one class makes very heavy use of the other
 In general relationships should be as lightweight as possible

© Garth Gilmour 2008

D dDependency Bonus

Employee

award(bonus : Bonus)
changeDept(dept : Department)

Department

changeDept(dept : Department)
getCode() : TaxCode
calculateSalary() : double

TaxCode

C l l t
public class Employee {

public void award(Bonus bonus) { … }
public void changeDept(Department dept) { … }
public TaxCode getCode() { … }

S () {

Calculator

public double calculateSalary() {
Calculator calc = new Calculator();
…

}
}

© Garth Gilmour 2008

}

D d i B t P kDependencies Between Packages

 Packages can be dependant on one another
 If one or more classes in a package use one or more

classes in another then there is a dependencyclasses in another then there is a dependency
 Packages representing layers are dependant on the

services provided by the layer below

com megacorp gui

javax.swing

com.megacorp.gui

java.awt

com.megacorp.logic

© Garth Gilmour 2008

g p g

D d i B t P kDependencies Between Packages

© Garth Gilmour 2008

R l ti hi S (i J)Relationships Summary (in Java)
<<Interface>>

Person
<<Interface>>

Payable

pay()

Employee

Job

id : String

bli l E l d P i l P bl {

allocateJob(work : Job)
pay() Department

dept

id : String

public class Employee extends Person implements Payable {
private Department dept;
private String id;
public void allocateJob(Job work) { … }
public void pay() { … }

© Garth Gilmour 2008

pub c o d pay() { }
}

R l ti hi S (i C#)Relationships Summary (using C#)
<<Interface>>

Person
<<Interface>>

Payable

pay()

Employee

Job

id : String

bli l E l P P bl {

allocateJob(work : Job)
pay() Department

dept

id : String

public class Employee : Person, Payable {
private Department dept;
private string id;
public void allocateJob(Job work) { … }
public void pay() { … }

© Garth Gilmour 2008

pub c o d pay() { }
}

D t ili R l ti hiDetailing Relationships
 Every relationship needs to have

 A direction of navigation
 A multiplicity at each end

 Most relationships should have
 An appropriate name
 A name for the major role

 Initially these are left out
 In a finished design they need to be present
 Incrementally or via reverse engineering

 The level of detail depends on usage
 In particular who will consume the UML

© Garth Gilmour 2008

N i R l ti hiNaming Relationships

 Relationships can be named
 This has no effect on the generated code but greatly increases

the readability of the diagramy g
 An arrowhead indicates how the name should be read

 For straightforward relationships this is not required
 But for industry specific terms it is very important But for industry specific terms it is very important

Person
addresslives at

Address

Position
stockheld on

Stock

© Garth Gilmour 2008

N i ti R l ti hi d R lNavigating Relationships and Roles

 Navigation is the direction relationships work in
 As indicated by an open arrowhead

 The arrow shows which object uses the other The arrow shows which object uses the other
 In an association this will be via a field
 In a dependency this will be via a parameter etc…

N th t b th d No arrows means the same as arrows at both ends
 This is to be avoided unless absolutely necessary
 Bidirectional navigation increases complexity and coupling

 In associations a role name is placed by the arrow
 This will be the name of the field in the generated code

© Garth Gilmour 2008

N i ti R l ti hi d R lNavigating Relationships and Roles
public class A {

private B ref;
}
public class B { }

A ref B

public class A { }
public class B {

private A ref;
A ref B

}

public class A { A ref1 Bref2
private B ref1;

}
public class B {

private A ref2;
}

A ref1 Bref2

© Garth Gilmour 2008

}

N i ti d M lti li itNavigation and Multiplicity

 Multiplicity shows the number or range of objects that
participate in either side of the relationship
 Represented as a single number or a range Represented as a single number or a range

 For example 0,1,0..3,4..16,*,1..*

 The values chosen affect the design of the class
 Multiplicities of 1 can be represented as a reference Multiplicities of 1 can be represented as a reference
 Multiplicities greater than 1 require an array or a collection

 If the multiplicity is 0 then the link may not be present
C d f ll f Code must test for null references etc…

© Garth Gilmour 2008

N i ti d M lti li itNavigation and Multiplicity
public class A {

private B ref;
}
public class B { }

A ref B
1

public class A {
private B [] ref = new B[4];

}
A ref B

0 4}
public class B { }

0..4

public class A {
A B//Holds B objects

private List ref = new ArrayList();
}
public class B { }

A ref B
0..*

© Garth Gilmour 2008

Sh i N i ti d M lti li itShowing Navigation and Multiplicity

© Garth Gilmour 2008

U l R l ti hiUnusual Relationships

 A class may have multiple relationships with another
 If the other class is used in several different ways

 A class may have a relationships to itself A class may have a relationships to itself
 If an object has references to other instances of the same class

bli l P {public class Person {
private Address home;
private Address work;

}

Person Addresshome

work

public class Node {
private Node next;
private Node previous;

}

Node

© Garth Gilmour 2008

} next
0..1

previous
0..1

D t il d R l ti hi SDetailed Relationships Summary
<<Interface>>

Person
<<Interface>>

Payable

pay()

Employee
DepartmentJob deptid St i works inIs allocated

allocateJob(work : Job)
pay()

pdeptid : String works inIs allocated

120..*

public class Employee extends Person implements Payable {
private Department dept;
private String id;
public void allocateJob(Job work) { … }

bli id () { }

© Garth Gilmour 2008

public void pay() { … }
}

