The Logical View

Part Two - Structure

Sample Content © Garth Gilmour 2008 garth@ggilmour.com

" J
The Static Logical View

m The dynamic logical view determines the static

You discover what classes are required when you try to
Implement flow of events on interaction diagrams

A class should only be in the design if it serves a role within the
realizations of one or more Use Cases

m If objects interact their classes must be related
The UML defines six standard relationships
These are interpreted according to your language

m The system structure is shown on Class Diagrams

A single Class Diagram would typically be too large to use
We draw Class Diagrams for different parts of the system
m This are called ‘View Of Participating Class’ diagrams (VOPC)

© Garth Gilmour 2008

" J
Representing Classes

m Classes are drawn as rectangles

Each rectangle has three compartments
m The class name and package

m The fields of the class
Attributes in UML terminology

m The methods of the class
Operations in UML terminology

Compartments may be omitted on some diagrams
s Depending on the level of detail required

© Garth Gilmour 2008

Representing Classes

Employee
(com.megacorp.payroll)

name : String
age : Integer
salary : Double

Employee
(com.megacorp.payroll)

promote()

awardBonus(bonus : Double)
iIsPayday() : Boolean
calcSalary() : Double

toString() : String

equals(other : Object) : Boolean

Employee
(com.megacorp.payroll)

promote()
awardBonus(bonus : Double)
isPayday() : Boolean
calcSalary() : Double
toString() : String

equals(other : Object) : Boolean

© Garth Gilmour 2008

" J
Representing Classes

m Classes are specialised with stereotypes
Which take the form of ‘<< stereotype name >>’
m Stereotypes can attach to any UML element

The interface stereotype is the most used

m It describes a class that defines operations but is without
attributes or any implementation

= This maps directly to the interface type in Java and C#
= In C++ this maps to a class with only pure virtual functions

m During analysis the MVC pattern is often used
Classes are marked as boundary, control or entity

© Garth Gilmour 2008

Stereotypes and Class Diagrams

<<Interface>>
WageEarner

<<Entity>>
Person

<<Control>>
FlexiTimeMonitor

<<Boundary>>
PersonnelDB

<<Entity>>
Employee

<<Entity>>
Department

© Garth Gilmour 2008

Class Diagram for the ATM System

ATMWF arm Controller
Bdis playviithdr awlamounts() - 1 SvalidateP MG
Pdis playDispensingMessage - *authuriseWithdrawlﬂ

1
1

1
Banklnterface

—

CashDispenser

Qdizpensen BealidatePING
Qretumcard) PauthoriseWithdrawd O

© Garth Gilmour 2008

" J
Representing Packages

m Every class belongs to a package

Packages are a generic grouping construct
= They can contain use cases, actors, nodes etc...

Packages of classes organise the architecture
m Cooperating classes are put in the same package
m Packages can themselves be contained in a package
= At the highest level every layer of the system is a package

m Packages do not have a diagram of their own
Class diagrams may show all classes in packages
Packages map to namespaces in C++

© Garth Gilmour 2008

<<Layer>> User Interfaces

Swing GUI

JSF Web Application

Java FX Rich Client

|
|
|
v

Web Services

JTA Enabled
Domain Model

<<Layer>> Business Logic and Database Access

EJB3 Session Beans

© Garth Gilmour 2008

Packages Used In Java and .NET

7

‘ Java lang | __________ ‘ JaVa io \ ‘ System |‘ """"" ‘ System 10 \
n
‘ java.net | ‘ System.Net |’

‘ java.sq \ ‘ System.Data \

© Garth Gilmour 2008

= S
Structural Relationships and UML

m UML defines 6 kinds of relationships

These mainly exist between classes but also between
packages, actors and use cases

Note that not all OO programming languages offer each of
these relationships and every language uses them differently

m The relationships are shown on the next slide:
1. Generalization
2. Realization
3. Dependency
4. Association
5. Aggregation
6. Composition

© Garth Gilmour 2008

Structural Relationships and UML

A

JAN

" A
Generalization

m Generalization is the UML term for inheritance
The relationship always means ‘IS A KIND OF’

m Generalization in classes has already been discussed

Remember that private members may be inherited but are not
accessible (except indirectly through helper functions)

m Some languages support different kinds of inheritance

The generalization relationship can be marked with ‘<<private>>’
or ‘<<protected>>’ when using specialized inheritance in C++

= Note that using this C++ feature is no longer recommended

m Actors can also use generalization
To show that two actors initiate a common set of Use Cases

© Garth Gilmour 2008

Generalization In Classes

public class Person {

Person private String name;

private int age;

public Person(String name, int age) {

name : String

age : int this.name = name;
Person(String,int) this.age = age;
AN)
}
public class Employee extends Person {
Employee private double salary;
salary : double public Employee(String name, int age, double salary) {
L super(name,age);
Employee(String,int,double) i ke = by

}
}

© Garth Gilmour 2008

" A
Generalization In Actors
Q/.

Install Programs
Create Folders
Admin

* »(Schedule Jobs

Power-User

© Garth Gilmour 2008

" A
Realization

m Realization is when an interface is generalized
A class Is inheriting a set of methods without any implementation
m Java interfaces can also contain constants

This is best thought of as fulfilling a contract

m By realizing the interface you are promising to clients that you will
properly implement the operations

m What properly means must be defined for each interface
m Packages are allowed to realize interfaces

This means that the classes within the package cooperate to
Implement the operations in the interface

Such an arrangement always evolves into a component

© Garth Gilmour 2008

Realization

O DBTransaction
Transaction
<<Interface>> enlist(r:Resource)
. setRollbackOnly
Transaction commit
rollback
enlist(r:Resource)
commit public interface Transaction {
rollback public void enlist(Resource r);
setRollbackOnly public void commit();
VAN public void rolback();
| public void setRollbackOnly();
! }
|

DBTransaction

public class DBTransaction
implements Transaction {
/I Code omitted

}

© Garth Gilmour 2008

" A
Associlation

m Association is the most common relationship
It models a permanent link between classes
The link iIs made when the object is constructed
m Or deferred until a client calls a ‘setter’ method
m Only significant associations are modelled
We don't model links to built in classes like ‘Date’ and ‘String’

Associations are only drawn for classes which are also part of
the system or whose members are important

m Modelling tools will automatically reverse engineer libraries

m An object should not set its own associations
Allowing a client to set them facilitates unit testing

© Garth Gilmour 2008

Associlation

Person

name : String
birthDate : Date

Address

Person(String,Date,Address)

address
~
P

}
}

public class Person {

private String name;

private Date birthDate;

private Address address;

public Person(String name, Date birthDate,

Address address) {

this.name = name,;
this.birthDate = birthDate;
this.address = address;

© Garth Gilmour 2008

We could also model the Person class as below.
But it would not be appropriate as Address,
and only Address, is architecturally significant

Person

//ALL FIELDS SPECIFIED
VIAASSOCIATIONS

Person(String,Date,Address)

Person

name : String
birthDate : Date
address : Address

Person(String,Date,Address)

© Garth Gilmour 2008

String
name
Address
address
Date
birthDate

" J
Aggregation and Composition

m There are two stronger types of association
These have no direct mapping in the Java language
However they may emerge in your design

m Aggregation models a whole-part association
The whole is not complete without the parts

What ‘complete’ means is somewhat nebulous
It can be important when mapping to the database

m Composition represents coincident lifetimes
The parts do not survive the destruction of the whole

Composition requires non-shared aggregation
= Otherwise the whole could not safely delete its parts

© Garth Gilmour 2008

Aggregation and Composition

Person

name : String
birthDate : Date

Person(String,Date,Address)

Person

name : String
birthDate : Date

Address
<>\ address
\ 7 |
N
N\
\
\

[Aggregation

Address

Person(String,Date,Address)

[Composition

© Garth Gilmour 2008

" J
Dependency

m Dependency is a lighter form of association

It describes a short term ‘using’ relationship

As with association we only model significant relationships
m Class A has a dependency to class B If:

An method of A is passed a B object as a parameter

An method of A declares a B object as a local variable

A uses a global instance of B (public and static in Java)
m Dependency is usually preferable to association

Unless one class makes very heavy use of the other
In general relationships should be as lightweight as possible

© Garth Gilmour 2008

Dependency

Employee
/
/
award(bonus : Bonus) .g///
changeDept(dept : Department) \\\\
getCode() : TaxCode \
calculateSalary() : double

public class Employee {

public TaxCode getCode() { ... }
public double calculateSalary() {

public void award(Bonus bonus) { ... }
public void changeDept(Department dept) { ... }

Calculator calc = new Calculator();

© Garth Gilmour 2008

Bonus

Department

TaxCode

Calculator

" S
Dependencies Between Packages

m Packages can be dependant on one another

If one or more classes in a package use one or more
classes in another then there is a dependency

Packages representing layers are dependant on the
services provided by the layer below

1
| _ | javax.swing
com.megacorp.gui <Z
\\\ _l
T S
— \[, = java.awt

com.megacorp.logic

© Garth Gilmour 2008

Dependencies Between Packages

1] 1]
I
\\
| \
\
I \
I \
\\
\
1 v 1y 1
———>
|
/ \ \
| \ N
| // \\ \\
| // \
I 4 \\ \\
| v/ |y | "\

© Garth Gilmour 2008

Relationships Summary (in Java)

<<Interface>>
Payable Person
pay()
TS~ Job
Employee -7

id : String -

allocateJob(work : Job)
pay() Department
dept

public class Employee extends Person implements Payable {
private Department dept;
private String id;
public void allocateJob(Job work) { ... }
public void pay() { ... }

}

© Garth Gilmour 2008

Relationships Summary (using C#)

<<Interface>>
Payable Person
pay()
TS~ Job
Employee -7

id : String -~

allocateJob(work : Job)

pay() Department
dept

public class Employee : Person, Payable {
private Department dept;
private string id;
public void allocateJob(Job work) { ... }
public void pay() { ... }

}

© Garth Gilmour 2008

" J
Detailing Relationships

m Every relationship needs to have
A direction of navigation
A multiplicity at each end
m Most relationships should have
An appropriate name
A name for the major role
m Initially these are left out
In a finished design they need to be present
Incrementally or via reverse engineering
m The level of detail depends on usage
In particular who will consume the UML

© Garth Gilmour 2008

"
Naming Relationships

m Relationships can be named

This has no effect on the generated code but greatly increases
the readability of the diagram

m An arrowhead indicates how the name should be read
For straightforward relationships this is not required
But for industry specific terms it is very important

Person _ Address
lives at D> address

Position Stock
held on D> stock

© Garth Gilmour 2008

" S
Navigating Relationships and Roles

m Navigation is the direction relationships work in
As indicated by an open arrowhead
m The arrow shows which object uses the other

In an association this will be via a field
In a dependency this will be via a parameter etc...

m NoO arrows means the same as arrows at both ends
This is to be avoided unless absolutely necessary
Bidirectional navigation increases complexity and coupling

m In associations a role name is placed by the arrow
This will be the name of the field in the generated code

© Garth Gilmour 2008

Navigating Relationships and Roles

public class A {
private B ref; A ref B

V

}
public class B { }

public class A{}
public class B { A ref
private A ref;

public class A {
private B refl;

}

public class B {
private A ref2;

}

© Garth Gilmour 2008

" I
Navigation and Multiplicity

m Multiplicity shows the number or range of objects that
participate in either side of the relationship

Represented as a single number or a range
m For example 0,1,0..3,4..16,*,1..*

m The values chosen affect the design of the class
Multiplicities of 1 can be represented as a reference
Multiplicities greater than 1 require an array or a collection

m If the multiplicity is O then the link may not be present
Code must test for null references etc...

© Garth Gilmour 2008

Navigation and Multiplicity

public class A {

private B ref; A ref B
} 17
public class B { }

public class A {

private B [] ref = new B[4]; A ref B
} 0.4
public class B {}

public class A {
/[Holds B objects A ref B
private List ref = new ArrayList(); 0.*

}
public class B { }

© Garth Gilmour 2008

Showing Navigation and Multiplicity

Employee
Address %name Btring
* Sitri 1 hias an 1 haseSalary | Currency warks in
_@pnstcnde ST Q)isDnHuIida@.r: Boolean Cepartment

& street : String

o H +*

&stown ; String SrmarkonHo idayd . 1
@ hangeAddress
SisonHoliday

FatTimeEmployee - FullTimeEm ployee

Meeting

%hnursWnrkedWeekly Cnteger | %1777 Qwearthlnnus D CUrency

mahnpges
Secretarny SalesPerson mManager

© Garth Gilmour 2008

Unusual Relationships

m A class may have multiple relationships with another
If the other class is used in several different ways

m A class may have a relationships to itself
If an object has references to other instances of the same class

public class Person {
private Address home;
private Address work;

}

public class Node {
private Node next;
private Node previous;

}

Person home| Address
work
Node
previous next
0.1 0.1

© Garth Gilmour 2008

Detailed Relationships Summary

<<Interface>>
Payable Person
pay()
Employee
Job | s alocated by
S s alocated | id: string

works in » dept

allocateJob(work : Job)

pay()

7|

20..* 1

private Department dept;
private String id;

public void pay() { ... }

public class Employee extends Person implements Payable {

public void allocateJob(Job work) { ... }

© Garth Gilmour 2008

Department

