Introducing Spring

A Lightweight Java Container

Sample Content © Garth Gilmour 2008 garth@ggilmour.com

"
Introducing Spring

m Spring was born from dislike of JEE
JEE can be viewed as cumbersome, awkward and intrusive
m Especially for small to medium size projects
The creator of Spring (Ron Johnson) laid the foundations for a
simpler approach in his book ‘Expert One on One J2EFE’
m Spring Is a lightweight container
It provides a managed environment for your components

The environment aims to be as unobtrusive as possible
m Your code is not tied to Spring interfaces, base classes etc...

Spring can be used inside, outside or instead of a JEE Server
m BEA have enthusiastically adopted it as part of WebLogic

© Garth Gilmour 2008

" I
Spring History

Expert One on One J2EE (November 2002)
Spring 1.0 Milestone 1 (August 2003)
Spring 1.0 (March 2004)

Spring 1.1 (September 2004)

Spring 1.2 (May 2005)

Spring 2.0 Milestone 1 (December 2005)
Spring 2.0 (October 2006)

Works with Java 1.3 but increasing numbers of features require
Java 1.5 (e.g. parts of AOP support)

m Spring 2.5 (November 2007)

© Garth Gilmour 2008

" J
Key Features of Spring

m Spring has three key features
The first two features enable the third

m Spring builds beans via dependency injection
Which enables your application to be reconfigured on the fly
This is very useful if you are adopting Agile Development

m Spring can act as a platform for AOP
In a manner that makes adopting AOP much less scary

m Spring works as an integration tool

Enabling you to combine multiple open source frameworks
m Such as Hibernate, JavaServer Faces and Web Services

This functionality is built on top of dependency injection

© Garth Gilmour 2008

The Spring Framework

Dep_enc{ency Aspect Oriented
Injection Programming

Enterprise
Services

Integration

Components

¥

Simpler, POJO Based, Java and JEE Applications...

© Garth Gilmour 2008

Spring as an Integration Platform

M) G
U U
Web Framework g Spring g ORM Framework
(JSF, Struts, MVC ...) 5_ (Templates) :';— (JPA, Hibernate ...)
A —_— — A
| |
; A

________) . I
Config B

© Garth Gilmour 2008

Key Features of Spring

Dependency Injection Container

Aspect Oriented Programming

N

Integration Platform Web Framework

NS

© Garth Gilmour 2008

" S
Spring as an Integration Platform

m Modern applications combine frameworks
Struts for the web tier + Hibernate for ORM
A Swing GUI + Web Services to reach the server
JSF for the web tier + business logic in EJB’s

m Spring simplifies the task of integrating frameworks
It provides helper and utility classes for each framework
These can be mixed with your code via injection or AOP

m Spring simplifies your use of:

Database access libraries (JDBC, IBATIS etc...)
ORM frameworks (Hibernate, TopLink, JPA etc...)

Web frameworks (Struts, JSF, Tiles, Velocity etc...)
Remote objects (RMI, IMS, EJB, Web Services etc...)

© Garth Gilmour 2008

Basic Dependency

Injection In Spring

Dynamically Wiring
Components Together

Sample Content © Garth Gilmour 2008 garth@ggilmour.com

"
Introducing Dependency Injection

m Consider the class below:
Q: Does this count as good object oriented design?
Q: What problems would this cause for testing / QA?

public class Shop {
public Shop() {
pricingEngine = new PricingEngine(500,10);
stockCheckEngine = new StockCheckEngine();
paymentEngine = new PaymentEngine("www.somewhere.com");
}
public boolean makePurchase(String itemNo, int quantity, String cardNo) {
//details omitted
}
private PricingEngine pricingEngine;
private StockCheckEngine stockCheckEngine;
private PaymentEngine paymentEngine;

}

© Garth Gilmour 2008

"
Introducing Dependency Injection

m The problem with this class is that it completely
encapsulates the creation of its dependencies
A ‘Shop’ is tightly coupled to the same kind of ‘PricingEngine’,
‘PaymentEngine’ and ‘StockCheckEngine’
m This raises two closely related problems
It is Impossible to create a unit test for the ‘Shop’ class
m The closest we can get is an integration test of four classes

We cannot create custom configurations for special needs

m E.g. during QA or customer demos we might want to have a pricing
engine the reads from a comma separated file or local database

© Garth Gilmour 2008

"
Introducing Dependency Injection

m The current best practice is to inject dependencies
The class has its dependencies ‘injected’ from the outside
Loose coupling is enabled via interfaces and base classes

m The class is unaware of which implementation it is using

m If class A is dependent on B then we:

Extract a base class or interface from B
s Making room for multiple implementations
Refactor A to support injecting dependencies
m Either via constructor arguments or JavaBean properties

© Garth Gilmour 2008

Refactoring Class Dependencies

public class PaymentEngine {
public boolean authorize(String cardNo, double amount) {
return amount < 1000;
}

A 4

public interface PaymentEngine {
public boolean authorize(String cardNo, double amount);
}

public class PaymentEngineStub implements PaymentEngine {
public boolean authorize(String cardNo, double amount) {

return amount < 1000:;
}

} public class PaymentEngineWebService implements PaymentEngine {
public boolean authorize(String cardNo, double amount) {
//implementation omitted

}

© Garth Gilmour 2008

Dependencies Set via Constructors

public class Shop {
public Shop(PricingEngine pricingEngine,
StockCheckEngine stockCheckEngine,
PaymentEngine paymentEngine) {
super();
this.pricingEngine = pricingEngine;
this.stockCheckEngine = stockCheckEngine;
this.paymentEngine = paymentEngine;
}
public boolean makePurchase(String itemNo, int quantity, String cardNo) {
//details omitted
}

private PricingEngine pricingEngine;
private StockCheckEngine stockCheckEngine;
private PaymentEngine paymentEngine;

© Garth Gilmour 2008

Dependencies Set via Accessors

public class Shop {
public void setPaymentEngine(PaymentEngine paymentEngine) {
this.paymentEngine = paymentEngine;
}

public void setPricingEngine(PricingEngine pricingEngine) {
this.pricingEngine = pricingEngine;
}

public void setStockCheckEngine(StockCheckEngine stockCheckEngine) {
this.stockCheckEngine = stockCheckEngine;
}

public boolean makePurchase(String itemNo, int quantity, String cardNo) {
//details omitted
}

private PricingEngine pricingEngine;
private StockCheckEngine stockCheckEngine;
private PaymentEngine paymentEngine;

© Garth Gilmour 2008

=
Spring and Dependency Injection

m Spring acts as a universal object factory
It reads bean definitions from XML files and instantiates them
Definitions can be nested within one another

m Both constructor and property based injection is possible
You can stick to either or use a combination

public static void main(String[] args) throws Exception {
BeanFactory factory = new XmIBeanFactory(new FileSystemResource ("config.xml"));
Shop shop = (Shop)factory.getBean("shopWithMocks");
if(shop.makePurchase("AB123", 20, "DEF456GHI78")) {
System.out.printin("Purchase Succeeded");
} else {
System.out.printin("Purchase Failed");
}

}

© Garth Gilmour 2008

<bean id="paymentimplOne"
class="demos.v2.PaymentEnginelmpl">
<constructor-arg index="0">
<value>www.somewhere.com</value>
</constructor-arg>
<constructor-arg index="1">
<value>5000</value>
</constructor-arg>
</bean>

<bean id="stockMockOne"

<bean id="paymentMockOne"
class="demos.v2.PaymentEngineMock"/>

class="demos.v2.StockCheckEngineMock*/>

Dependency injection

i
|
|

<:I | using arguments
|
|
|

to constructors

<bean id="pricingMockOne"
class="demos.v2.PricingEngineMock">
<constructor-arg index="0">
<value>500</value>
</constructor-arg>
<constructor-arg index="1">
<value>10</value>
</constructor-arg>
</bean>

<bean id="shopWithMocks" class="demos.v2.Shop">
<constructor-arg index="2">
<ref bean="paymentMockOne"/>
</constructor-arg>
<constructor-arg index="1">
<ref bean="stockMockOne"/>
</constructor-arg>
<constructor-arg index="0">
<ref bean="pricingMockOne"/>
</constructor-arg>
</bean>

© Garth Gilmour 2008

<bean id="paymentimplOne"
class="demos.v3.PaymentEnginelmpl">
<constructor-arg index="0">
<value>www.somewhere.com</value> R 2N
</constructor-arg> | L R
<constructor-arg index="1"> : Dgpendency!njectlon !
<value>5000</value> <:| | using properties :
</constructor-arg> : (e.g. ‘setPricingEngine’) |
</bean> - .
<bean id="stockMockOne" ﬂ
class="demos.v3.StockCheckEngineMock"/>
</bean>
<bean id="paymentMockOne" <bean id="shopWithMocks"
class="demos.v3.PaymentEngineMock"/> class="demos.v3.Shop">
<property name="paymentEngine">
<bean id="pricingMockOne" <ref bean="paymentMockOne"/>
class="demos.v3.PricingEngineMock"> </property>
<property name="minimumDiscountAmount"> <property name="stockCheckEngine">
<value>500</value> <ref bean="stockMockOne"/>
</property> </property>
<property name="percentageDiscount"> <property name="pricingEngine">
<value>10</value> <ref bean="pricingMockOne"/>
</property> </property>
</bean> </bean>

© Garth Gilmour 2008

Dependency injection using
nested bean declarations

<bean id="shopWithMocks" class="demos.v4.Shop">
<property name="paymentEngine">
<bean class="demos.v4.PaymentEngineMock"/>
</property>
<property name="stockCheckEngine">
<bean class="demos.v4.StockCheckEngineMock"/>
</property>
<property name="pricingEngine">
<bean class="demos.v4.PricingEngineMock">
<property name="minimumDiscountAmount">
<value>500</value>
</property>
<property name="percentageDiscount">
<value>10</value>
</property>
</bean>
</property>
</bean>

© Garth Gilmour 2008

"
Using the Spring Framework

m A bean factory is the most basic way of using Spring
An ‘XmlBeanFactory’ builds beans based on an XML config file

The location of the file is represented by a ‘Resource’ object

m There are resource classes to represent the file system, byte arrays,
input streams, the classpath, URL'’s etc...

m Most applications will use an application context
This adds support for 118n, event generation and loading files

There are several kinds of application context:
m A ‘ClassPathXmlApplicationContext’ loads files via the classpath
m A ‘FileSystemXmlApplicationContext’ loads files via the file system

© Garth Gilmour 2008

" J
The Lifecycle of a Bean

m By default Spring creates singletons

Calling ‘factory.getBean(“fred”)’ always returns the same object
= Note this applies even if the bean was created indirectly

m Itis possible to define a bean as a prototype
A new Iinstance is created each time the bean is requested
Before V2 you added ‘singleton="false™ to the definition
Since V2 you write ‘scope=“prototype™ instead

m Spring 2.0 adds additional scopes for Web Applications
These are ‘request’ , ‘session’ and ‘global session’

m You can also specify lifecycle methods for beans
Via the ‘init-method’ and ‘destroy-method’ attributes

© Garth Gilmour 2008

" J
Support for Factory Methods

m Spring allows beans to be created indirectly

Via a factory method in the Bean
m Using the ‘factory-method’ element

Via a factory method in a separate Bean
m Using the ‘factory-bean’ and ‘factory-method’ elements
m The bean acting as a factory can be configured normally

m The name of the method is arbitrary
Normal choices are ‘instance’ or ‘newlnstance’

m Parameters are passed via ‘constructor-arg’ elements
The contents are converted into the required type

© Garth Gilmour 2008

<bean id="paymentimplOne"
class="demos.v5.PaymentEnginelmpl"
____________ . factory-method="instance">
“I <constructor-arg index="0">
| :> <value>www.somewhere.com</value>
: </constructor-arg>
| <constructor-arg index="1">
<value>5000</value>
</constructor-arg>

</bean>

<bean id="paymentimplFactory"
class="demos.v6.PaymentEngineFactory"/>
<bean id="paymentimplOne"
class="demos.v6.PaymentEnginelmpl"
———————————— | factory-bean="paymentimplFactory"
: factory-method="instance">
|
|
|

|:> <constructor-arg index="0">

<value>www.somewhere.com</value>

bmmm </constructor-arg>
<constructor-arg index="1">
<value>5000</value>
</constructor-arg>
</bean>

© Garth Gilmour 2008

" J
Support for Collections

m Spring makes it straightforward to inject collections
List, sets and maps and properties can all be declared

m The list and set types do not map directly to collections

Spring will create an array, ‘java.util.Collection’, ‘java.util.Set’ or
‘Java.util.List’ based on the type of the parameter

List members can be ‘value’, ‘ref’, ‘bean’, ‘null’ or nested lists

Element Description

list Both declare a sequence of values, only a list can contain duplicates

set

map An implementation of ‘java.util. Map’ where the keys are strings

props An implementation of ‘java.util.Properties’ - both keys and values are strings

© Garth Gilmour 2008

<bean id="pricingEngine" class="demos.v9.PricingEngineMock">
<property name="minimumDiscountAmount">
<value>500</value>
</property>
<property name="percentageDiscount">
<value>10</value>
</property>
<property name="prices">
<list>
<value>1.20</value>
<value>3.40</value>
<value>5.60</value>
</list>
</property>
</bean>
<bean id="paymentEngine" class="demos.v9.PaymentEngineMock"/>
<bean id="stockCheckEngine" class="demos.v9.StockCheckEngineMock">
<property name="testData">
<map>
<entry key="ABC123" value="10"/>
<entry key="DEF456" value="20"/>
<entry key="GHI789" value="30"/>
</map>
</property>
</bean>
<bean id="shopWithMocks" class="demos.v9.Shop" autowire="byName"/>

© Garth Gilmour 2008

" J
Support for Autowiring

m Autowiring is a powerful but scary feature

Spring implicitly works out which bean should be passed as the
parameter in a constructor or property

m There are four different types of autowiring
‘byName’ matches bean names to property names
m The bean called ‘shop’ is mapped to the method ‘setShop’

‘byType’ matches bean types to property parameter types

m If ‘setShop’ takes a parameter of interface type ‘Shop’ then the bean
that implements that interface will be injected (only one can exist)

‘constructor’ matches bean types to constructor parameter types
‘autodetect’ tries to match by constructor first and then by type

© Garth Gilmour 2008

Autowiring
By Type

Autowiring
By Name

<bean class="demos.v7.PricingEngineMock">
<property name="minimumDiscountAmount">
<value>500</value>
</property>
<property name="percentageDiscount">
<value>10</value>
</property>
</bean>
<bean class="demos.v7.PaymentEngineMock"/>
<bean class="demos.v7.StockCheckEngineMock"/>
<bean id="shopWithMocks" class="demos.v7.Shop" autowire="byType"/>

<bean id="pricingEngine" class="demos.v8.PricingEngineMock">
<property name="minimumDiscountAmount">
<value>500</value>
</property>
<property name="percentageDiscount">
<value>10</value>
</property>
</bean>
<bean id="paymentEngine" class="demos.v8.PaymentEngineMock"/>
<bean id="stockCheckEngine" class="demos.v8.StockCheckEngineMock"/>
<bean id="shopWithMocks" class="demos.v8.Shop" autowire="byName"/>

© Garth Gilmour 2008

" J
Using Inheritance in Definitions

m Autowiring is one way of minimizing configuration
Another way is declaring parent definitions

m One definition can be the specialization of another

The base definition doesn’t need any extra markup

s However you will probably want to declare it with ‘abstract=true’ to
prevent Spring generating instances

The derived definition uses ‘parent=baseBean’
m It can add its own properties and override inherited ones

Clients instantiate derived definitions as normal
m The use of inheritance does not affect client code

© Garth Gilmour 2008

<!I-- The parent bean declaration -->

<bean id="shopWithMocks" abstract="true" class="demos.v10.Shop">
<property name="paymentEngine"><ref bean="paymentEngine" /></property>
<property name="stockCheckEngine"><ref bean="stockCheckEngine" /></property>
<property name="pricingEngine"><ref bean="pricingEngine" /></property>

</bean>

<!-- Three derived declarations -->
<bean id="testShopl" parent="shopWithMocks">
<property name="shopName">
<value>Test Shop No 1</value>
</property>
</bean>
<bean id="testShop2" parent="shopWithMocks" >
<property name="shopName">
<value>Test Shop No 2</value>
</property>
</bean>
<bean id="testShop3" parent="shopWithMocks" >
<property name="shopName">
<value>Test Shop No 3</value>
</property>
</bean>

© Garth Gilmour 2008

Extra Dependency

Injection Features

Power Features in Spring

Sample Content © Garth Gilmour 2008 garth@ggilmour.com

" J
Additional Dependency Injection

m Spring offers advanced dependency injection features:
Derived beans can override inherited settings
Method definitions in beans can be replaced

Property editors can be used to pass user defined types into
setter methods and constructors

Information can be read from properties files

Beans can be made aware of the Spring framework
m By listening for events or having context objects injected
The dependency injection process can be customized
m By creating post-processors for beans and bean factories
Beans can be written using scripting languages

© Garth Gilmour 2008

" J
Overriding Inherited Properties

m \We have already seen inheritance in bean definitions
This i1s normally done to reuse shared properties

m There are two ways of customizing inheritance

A bean can override inherited properties
= In the same manner as method overriding in Java
m You can also override ‘init-method’ and ‘destroy-method’
A bean declaration does not have to reference a class
= It can simply be used to hold common properties
m The declaration always needs to have “abstract=true”

m The classes whose bean declarations inherit from such a
declaration do not need to share a common base class

© Garth Gilmour 2008

<bean id="sharedProperties" abstract="true">
<property name="number"><value>10</value></property>
<property name="street"><value>Arcatia Road</value></property>
<property name="postcode"><value>BT37ABC</value></property>
</bean>

<bean id="baseEmployee" parent="sharedProperties" abstract="true"
class="demos.overriding.Employee">
<property name="title"><value>GeneralStaff</value></property>
<property name="salary"><value>20000.0</value></property>
</bean>

<bean id="employee" parent="baseEmployee">
<property name="title"><value>SoftwareDeveloper</value></property>
<property name="fullName"><value>Dave Jones</value></property>
</bean>

<bean id="company" parent="sharedProperties" class="demos.overriding.Company">
<property name="vatRegistration"><value>ABC123</value></property>
<property name="taxes"><value>4500.25</value></property>

</bean>

© Garth Gilmour 2008

=
Replacing Bean Method Definitions

m Spring can replace the definitions of methods

A method invocation can be redirected away from the intended
bean and towards a different one

m This feature is enabled via proxies

Spring creates a new class that implements the same interface
as your bean and returns an instance

Proxies are the key to implementing AOP

m In order to replace a method:
Place a ‘replaced-method’ tag in the bean declaration

Create a class that implements the ‘MethodReplacer’ interface
= The new functionality is placed in the ‘reimplement’ method

© Garth Gilmour 2008

Replacing Bean Method Definitions

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd">

<bean id="addReplacer" class="demos.altering.methods.MathsReplacer"/>
<bean id="maths1" class="demos.altering.methods.MathsIimpl"/>

<bean id="maths2" class="demos.altering.methods.Mathsimpl">
<replaced-method name="addNumbers" replacer="addReplacer">
<arg-type>int</arg-type>
<arg-type>int</arg-type>
</replaced-method>
</bean>
</beans>

© Garth Gilmour 2008

Replacing Bean Method Definitions

public interface Maths {
int addNumbers(int nol, int no2);

}

public class Mathsimpl implements Maths {
public int addNumbers(int nol, int no2) {
return nol + no2;

}

public class MathsReplacer implements MethodReplacer {
public Object reimplement(Object target, Method method,
Object[] params) throws Throwable {
int paraml = Integer.parselnt(params[0].toString());
int param?2 = Integer.parselnt(params[1].toString());
return paraml * paramz;

© Garth Gilmour 2008

" S
Using JavaBean Property Editors

m Property Editors are part of the JavaBeans specification
They allow user-defined types to be used in setter methods
This feature was intended for GUI tools and is rarely used

m A Property Editor class extends ‘PropertyEditorSupport’

The ‘setAsText’ method takes a string, parses it and uses the
extracted data to populate a user-defined type

This UDT instance is then passed back via ‘setValue’
m In order to register Property Editors with Spring
Declare an instance of ‘CustomEditorConfigurer’ in the bean file

Populate the ‘customEditors’ property with a map
m Where the key is the UDT name and the value is a bean class

© Garth Gilmour 2008

<beans xmins="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd">

<bean class="org.springframework.beans.factory.config.CustomEditorConfigurer">
<property name="customEditors">
<map>
<entry key="demos.editors.Address">
<bean id="addressEditor" class="demos.editors.AddressPropertyEditor"/>
</entry>
</map>
</property>
</bean>

<bean id="employee" class="demos.editors.Employee">
<property name="fullName">
<value>Dave Smith</value>
</property>
<property name="address">
<value>10#Arcatia Road#Belfast#BT37 AB7</value>
</property>
</bean>
</beans>

© Garth Gilmour 2008

public class AddressPropertyEditor extends PropertyEditorSupport {
@Override
public String getAsText() {
return getValue().toString();
}
@Override
public void setAsText(String input) throws IllegalArgumentException {
Pattern pattern = Pattern.compile("([0-9]{2})#([A-Za-z |+)#([A-Za-z]+)#([A-Z0-9]+)");
Matcher matcher = pattern.matcher(input.trim());
if(matcher.matches()) {
int tmpNumber = Integer.parselnt(matcher.group(1));
String tmpStreet = matcher.group(2);
String tmpCity = matcher.group(3);
String tmpPostcode = matcher.group(4);
Address address = new Address(tmpNumber,tmpStreet,tmpCity,tmpPostcode);
setValue(address);

© Garth Gilmour 2008

" S
Reading Info From Property Files

m You can use property files in a Spring based system:
Perhaps because they were part of the pre-Spring architecture
Or in order to allow non-developers to change system settings

m There are two ways of including property files

By declaring an instance of ‘PropertyPlaceholderConfigurer’

By using the ‘property-placeholder’ schema extension
m The value is a comma separated list of file paths

m Properties are accessed via the ‘${name}’ syntax
The same syntax as ANT files and JSP EL

© Garth Gilmour 2008

<bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
<!I-- <property name="location" value="app.properties" /> -->
<property name="locations">
<list>
<value>demos/properties/appl.properties</value>
<value>demos/properties/app2.properties</value>
<value>demos/properties/app3.properties</value>
<value>demos/properties/app4.properties</value>
</list>
</property>
</bean>

<bean name="employee" class="demos.properties.Employee">

<property name="name" value="${employee.name}"/>

<property name="age" value="${employee.age}"/>

<property name="department" value="${employee.dept}"'/>

<property name="address" value="${employee.address}"/>

<property name="salary" value="${employee.salary}"/>

<property name="married" value="${employee.isMarried}"/>

<property name="holidaysRemaining" value="${employee.holidaysRemaining}"/>

<property name="sickDaysThisYear" value="${employee.sickDaysThisYear}"/>
</bean>

© Garth Gilmour 2008

<?xml version="1.0" encoding="UTF-8"?>
<beans xmins="http://www.springframework.org/schema/beans"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmins:context="http://www.springframework.org/schema/context"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-2.5.xsd">

<context:property-placeholder location="demos/properties/appl.properties,
demos/properties/app2.properties,
demos/properties/app3.properties”/>

<bean name="employee" class="demos.properties.Employee">
<property name="name" value="${employee.name}"/>
<property name="age" value="${employee.age}"/>
<property name="department" value="${employee.dept}"/>
<property name="address" value="${employee.address}"/>
<property name="salary" value="${employee.salary}"/>
<property name="married" value="${employee.isMarried}"/>
<property name="holidaysRemaining" value="${employee.holidaysRemaining}"/>
<property name="sickDaysThisYear" value="${employee.sickDaysThisYear}"/>
</bean>
</beans>

© Garth Gilmour 2008

" J
Creating Spring-Aware Beans

m All the Beans we have built so far are POJO'’s

They have no knowledge of the container that is hosting them
m Itis possible to make beans aware of the container

By implementing callback interfaces provided by Spring
m There are three callback interfaces:

‘BeanNameAware’ enables a bean to discover its name

‘BeanFactoryAware’ enables a bean to access the factory
m E.g. to discover if a bean exists and what scope it is in

‘ApplicationContextAware’ provides access to the context
m The bean can explore the full framework configuration

© Garth Gilmour 2008

public class MyBeanOne implements BeanNameAware {
public void setBeanName(String name) {
this.name = name;
}
public void sayName() {
System.out.printin("My name is: " + hame);

}

private String name;

public class MyBeanThree implements ApplicationContextAware {
public void setApplicationContext(ApplicationContext context) throws BeansException {

this.context = context;
}
public void listBeans() {
System.out.printin("Deployed beans are: ");
for(String name : context.getBeanDefinitionNames()) {
System.out.printf("\t%s of type %s\n", name, context.getType(name).getName());
}
}

private ApplicationContext context;

© Garth Gilmour 2008

public class MyBeanTwo implements BeanFactoryAware {
public void setBeanFactory(BeanFactory factory) throws BeansException {
this.factory = factory;
}
public void printBeanDetails(String beanName) {
if(factory.containsBean(beanName)) {
System.out.printf("%s is an instance of %s",
beanName,factory.getType(beanName).getName());
if(factory.isPrototype(beanName)) {
System.out.printin(" in prototype scope");
} else {
System.out.printin(" in singleton scope");

}
}
}

private BeanFactory factory;

© Garth Gilmour 2008

=
Customizing Dependency Injection

m The Spring framework can be customized
By writing post processor components that perform extra work

m There are two types of post processor

A bean post processor can modify a bean both before and after
Its properties are set and init method called

A bean factory post processor can modify the tree of bean
declarations created by reading from the XML file

m This could be used to add extra beans into the scope of the factory
m E.g. by finding all the classes that implement a particular interface
m Registering post processors with Spring Is easy

Any declared bean that implements ‘BeanPostProcessor’ or
‘BeanFactoryPostProcessor’ will be found and registered

© Garth Gilmour 2008

public class MyBeanFactoryPostProcessor implements BeanFactoryPostProcessor {

public void postProcessBeanFactory(ConfigurableListableBeanFactory factory)
throws BeansException {
System.out.printin("MyBeanFactoryPostProcessor.postProcessBeanFactory called!");

public class MyBeanPostProcessor implements BeanPostProcessor {

public Object postProcessAfterlnitialization(Object bean, String name) throws BeansException {
System.out.printin("After init called for " + name + " of type " + bean.getClass().getName());
return bean;

}

public Object postProcessBeforelnitialization(Object bean, String name) throws BeansException {
System.out.printin("Before init called for " + name + " of type " + bean.getClass().getName());
return bean;

© Garth Gilmour 2008

" J
Creating Beans Via Scripts

m Scripting is becoming a key part of the Java platform
As the language itself becomes more and more complex

m Spring supports beans implemented using scripts
At present ‘JRuby’,’Groovy’ and ‘BeanShell’ are supported
m The details of configuring and using each are slightly different
The scripts can be placed in two locations
m Either in separate files or inline in the Spring configuration file
m There is one major advantage to scripted beans
The framework can reload scripts when the file is modified

This creates ‘refreshable beans’ whose implementation can be
changed without needing to restart the application

© Garth Gilmour 2008

