
Introducing SpringIntroducing Spring

A Lightweight Java Container

garth@ggilmour.comSample Content © Garth Gilmour 2008

I t d i S iIntroducing Spring

 Spring was born from dislike of JEE
 JEE can be viewed as cumbersome, awkward and intrusive

 Especially for small to medium size projectsEspecially for small to medium size projects
 The creator of Spring (Ron Johnson) laid the foundations for a

simpler approach in his book ‘Expert One on One J2EE’
 Spring is a lightweight container Spring is a lightweight container

 It provides a managed environment for your components
 The environment aims to be as unobtrusive as possible

 Your code is not tied to Spring interfaces base classes etc Your code is not tied to Spring interfaces, base classes etc…
 Spring can be used inside, outside or instead of a JEE Server

 BEA have enthusiastically adopted it as part of WebLogic

© Garth Gilmour 2008

S i Hi tSpring History

 Expert One on One J2EE (November 2002)
 Spring 1.0 Milestone 1 (August 2003)

Spring 1 0 (March 2004) Spring 1.0 (March 2004)
 Spring 1.1 (September 2004)
 Spring 1.2 (May 2005)p g (y)
 Spring 2.0 Milestone 1 (December 2005)
 Spring 2.0 (October 2006)

W k ith J 1 3 b t i i b f f t i Works with Java 1.3 but increasing numbers of features require
Java 1.5 (e.g. parts of AOP support)

 Spring 2.5 (November 2007)

© Garth Gilmour 2008

K F t f S iKey Features of Spring
 Spring has three key features

 The first two features enable the third
 Spring builds beans via dependency injectionp g p y j

 Which enables your application to be reconfigured on the fly
 This is very useful if you are adopting Agile Development

 Spring can act as a platform for AOPp g p
 In a manner that makes adopting AOP much less scary

 Spring works as an integration tool
 Enabling you to combine multiple open source frameworks g y p p

 Such as Hibernate, JavaServer Faces and Web Services
 This functionality is built on top of dependency injection

© Garth Gilmour 2008

The Spring FrameworkThe Spring Framework

Dependency Aspect Orientedp y
Injection

Aspect Oriented
Programming

E t iIntegration
Components

Enterprise
Services

Simpler POJO Based Java and JEE Applications

© Garth Gilmour 2008

Simpler, POJO Based, Java and JEE Applications…

S i I t ti Pl tfSpring as an Integration Platform

Web Framework
(JSF, Struts, MVC ...)

ORM Framework
(JPA, Hibernate ...)

Spring
(Templates)

P
lug-In

P
lug-Inn n

Config A
Config B

Config A

© Garth Gilmour 2008

K F t f S iKey Features of Spring

Dependency Injection Container

Aspect Oriented Programming

Integration Platform Web Frameworkg

© Garth Gilmour 2008

S i I t ti Pl tfSpring as an Integration Platform

 Modern applications combine frameworks
 Struts for the web tier + Hibernate for ORM
 A Swing GUI + Web Services to reach the server
 JSF for the web tier + business logic in EJB’s

 Spring simplifies the task of integrating frameworks
 It provides helper and utility classes for each framework
 These can be mixed with your code via injection or AOP

 Spring simplifies your use of:
 Database access libraries (JDBC, iBATIS etc…)
 ORM frameworks (Hibernate, TopLink, JPA etc…)
 Web frameworks (Struts, JSF, Tiles, Velocity etc…)
 Remote objects (RMI, JMS, EJB, Web Services etc…)

© Garth Gilmour 2008

Basic Dependency
Injection in Spring

Dynamically Wiring
Components Together

garth@ggilmour.comSample Content © Garth Gilmour 2008

I t d i D d I j tiIntroducing Dependency Injection

 Consider the class below:
 Q: Does this count as good object oriented design?
 Q: What problems would this cause for testing / QA?

public class Shop {
public Shop() {

pricingEngine = new PricingEngine(500 10);

 Q: What problems would this cause for testing / QA?

pricingEngine new PricingEngine(500,10);
stockCheckEngine = new StockCheckEngine();
paymentEngine = new PaymentEngine("www.somewhere.com");

}
public boolean makePurchase(String itemNo, int quantity, String cardNo) {

//d t il itt d//details omitted
}

private PricingEngine pricingEngine;
private StockCheckEngine stockCheckEngine;
private PaymentEngine paymentEngine;

© Garth Gilmour 2008

p y g p y g ;
}

I t d i D d I j tiIntroducing Dependency Injection

 The problem with this class is that it completely
encapsulates the creation of its dependencies
 A ‘Shop’ is tightly coupled to the same kind of ‘PricingEngine’, A Shop is tightly coupled to the same kind of PricingEngine ,

‘PaymentEngine’ and ‘StockCheckEngine’
 This raises two closely related problems

 It is impossible to create a unit test for the ‘Shop’ class It is impossible to create a unit test for the Shop class
 The closest we can get is an integration test of four classes

 We cannot create custom configurations for special needs
 E g during QA or customer demos we might want to have a pricing E.g. during QA or customer demos we might want to have a pricing

engine the reads from a comma separated file or local database

© Garth Gilmour 2008

I t d i D d I j tiIntroducing Dependency Injection

 The current best practice is to inject dependencies
 The class has its dependencies ‘injected’ from the outside
 Loose coupling is enabled via interfaces and base classes Loose coupling is enabled via interfaces and base classes

 The class is unaware of which implementation it is using

 If class A is dependent on B then we:
 Extract a base class or interface from B Extract a base class or interface from B

 Making room for multiple implementations
 Refactor A to support injecting dependencies

 Either via constructor arguments or JavaBean properties Either via constructor arguments or JavaBean properties

© Garth Gilmour 2008

R f t i Cl D d iRefactoring Class Dependencies
public class PaymentEngine {p y g {

public boolean authorize(String cardNo, double amount) {
return amount < 1000;

}
}

public interface PaymentEngine {
public boolean authorize(String cardNo, double amount);

}
public class PaymentEngineStub implements PaymentEngine {

public boolean authorize(String cardNo, double amount) {
return amount < 1000;

}}
} public class PaymentEngineWebService implements PaymentEngine {

public boolean authorize(String cardNo, double amount) {
//implementation omitted

}
}

© Garth Gilmour 2008

}

D d i S t i C t tDependencies Set via Constructors

public class Shop {
public Shop(PricingEngine pricingEngine,

StockCheckEngine stockCheckEngine,
PaymentEngine paymentEngine) {y g p y g) {

super();
this.pricingEngine = pricingEngine;
this.stockCheckEngine = stockCheckEngine;
this.paymentEngine = paymentEngine;

}}
public boolean makePurchase(String itemNo, int quantity, String cardNo) {

//details omitted
}
private PricingEngine pricingEngine;
private StockCheckEngine stockCheckEngine;
private PaymentEngine paymentEngine;

}

© Garth Gilmour 2008

D d i S t i ADependencies Set via Accessors
public class Shop {

public void setPaymentEngine(PaymentEngine paymentEngine) {
this.paymentEngine = paymentEngine;

}
public void setPricingEngine(PricingEngine pricingEngine) {public void setPricingEngine(PricingEngine pricingEngine) {

this.pricingEngine = pricingEngine;
}
public void setStockCheckEngine(StockCheckEngine stockCheckEngine) {

this.stockCheckEngine = stockCheckEngine;
}
public boolean makePurchase(String itemNo, int quantity, String cardNo) {

//details omitted
}
private PricingEngine pricingEngine;private PricingEngine pricingEngine;
private StockCheckEngine stockCheckEngine;
private PaymentEngine paymentEngine;

}

© Garth Gilmour 2008

S i d D d I j tiSpring and Dependency Injection

 Spring acts as a universal object factory
 It reads bean definitions from XML files and instantiates them
 Definitions can be nested within one another Definitions can be nested within one another

 Both constructor and property based injection is possible
 You can stick to either or use a combination

public static void main(String[] args) throws Exception {
BeanFactory factory = new XmlBeanFactory(new FileSystemResource ("config.xml"));
Shop shop = (Shop)factory.getBean("shopWithMocks");
if(shop makePurchase("AB123" 20 "DEF456GHI78")) {if(shop.makePurchase(AB123 , 20, DEF456GHI78)) {

System.out.println("Purchase Succeeded");
} else {

System.out.println("Purchase Failed");
}

}

© Garth Gilmour 2008

}

<bean id="paymentImplOne"
l "d 2 P tE i I l"class="demos.v2.PaymentEngineImpl">

<constructor-arg index="0">
<value>www.somewhere.com</value>

</constructor-arg>
<constructor-arg index="1">g

<value>5000</value>
</constructor-arg>

</bean>

<bean id="stockMockOne"

Dependency injection
using arguments
to constructors

<bean id= stockMockOne
class="demos.v2.StockCheckEngineMock“/>

<bean id="paymentMockOne"
class="demos.v2.PaymentEngineMock“/>

S<bean id="pricingMockOne"
class="demos.v2.PricingEngineMock">

<constructor-arg index="0">
<value>500</value>

</constructor-arg>

<bean id="shopWithMocks" class="demos.v2.Shop">
<constructor-arg index="2">

<ref bean="paymentMockOne"/>
</constructor-arg>
<constructor-arg index="1"></constructor arg>

<constructor-arg index="1">
<value>10</value>

</constructor-arg>
</bean>

constructor arg index 1
<ref bean="stockMockOne"/>

</constructor-arg>
<constructor-arg index="0">

<ref bean="pricingMockOne"/>
</constructor arg>

© Garth Gilmour 2008

</constructor-arg>
</bean>

<bean id="paymentImplOne" p y p
class="demos.v3.PaymentEngineImpl">

<constructor-arg index="0">
<value>www.somewhere.com</value>

</constructor-arg>
<constructor arg index="1"> Dependency injection <constructor-arg index= 1 >

<value>5000</value>
</constructor-arg>

</bean>

p y j
using properties
(e.g. ‘setPricingEngine’)

<bean id="stockMockOne"
class="demos.v3.StockCheckEngineMock“/>

</bean>
<bean id="paymentMockOne"

class="demos v3 PaymentEngineMock“/>
<bean id="shopWithMocks"

class="demos v3 Shop">class demos.v3.PaymentEngineMock />

<bean id="pricingMockOne"
class="demos.v3.PricingEngineMock">

<property name="minimumDiscountAmount">
l 500 / l

class demos.v3.Shop >
<property name="paymentEngine">

<ref bean="paymentMockOne"/>
</property>
<property name="stockCheckEngine">

f b " t kM kO "/<value>500</value>
</property>
<property name="percentageDiscount">

<value>10</value>
</property>

<ref bean="stockMockOne"/>
</property>
<property name="pricingEngine">

<ref bean="pricingMockOne"/>
</property>

© Garth Gilmour 2008

p p y
</bean>

p p y
</bean>

D d i j ti iDependency injection using
nested bean declarations

<bean id="shopWithMocks" class="demos.v4.Shop">
<property name="paymentEngine">

<bean class="demos.v4.PaymentEngineMock"/>
/</property>

<property name="stockCheckEngine">
<bean class="demos.v4.StockCheckEngineMock"/>

</property>
<property name="pricingEngine">property name pricingEngine

<bean class="demos.v4.PricingEngineMock">
<property name="minimumDiscountAmount">

<value>500</value>
</property>
<property name "percentageDiscount"><property name="percentageDiscount">

<value>10</value>
</property>

</bean>
</property>

© Garth Gilmour 2008

y
</bean>

U i th S i F kUsing the Spring Framework

 A bean factory is the most basic way of using Spring
 An ‘XmlBeanFactory’ builds beans based on an XML config file
 The location of the file is represented by a ‘Resource’ object The location of the file is represented by a Resource object

 There are resource classes to represent the file system, byte arrays,
input streams, the classpath, URL’s etc…

 Most applications will use an application contextpp pp
 This adds support for i18n, event generation and loading files
 There are several kinds of application context:

 A ‘ClassPathXmlApplicationContext’ loads files via the classpathA ClassPathXmlApplicationContext loads files via the classpath
 A ‘FileSystemXmlApplicationContext’ loads files via the file system

© Garth Gilmour 2008

Th Lif l f BThe Lifecycle of a Bean
 By default Spring creates singletons

 Calling ‘factory.getBean(“fred”)’ always returns the same object
 Note this applies even if the bean was created indirectly

 It is possible to define a bean as a prototype
 A new instance is created each time the bean is requested
 Before V2 you added ‘singleton=“false”’ to the definition
 Since V2 you write ‘scope=“prototype”’ instead

 Spring 2.0 adds additional scopes for Web Applications
 These are ‘request’ , ‘session’ and ‘global session’

 You can also specify lifecycle methods for beans
 Via the ‘init-method’ and ‘destroy-method’ attributes

© Garth Gilmour 2008

S t f F t M th dSupport for Factory Methods

 Spring allows beans to be created indirectly
 Via a factory method in the Bean

 Using the ‘factory-method’ elementUsing the factory method element
 Via a factory method in a separate Bean

 Using the ‘factory-bean’ and ‘factory-method’ elements
 The bean acting as a factory can be configured normallyg y g y

 The name of the method is arbitrary
 Normal choices are ‘instance’ or ‘newInstance’

 Parameters are passed via ‘constructor arg’ elements Parameters are passed via constructor-arg elements
 The contents are converted into the required type

© Garth Gilmour 2008

<bean id="paymentImplOne"<bean id= paymentImplOne
class="demos.v5.PaymentEngineImpl"
factory-method="instance">

<constructor-arg index="0">
<value>www.somewhere.com</value>

/
Bean creation via
f t th d </constructor-arg>

<constructor-arg index="1">
<value>5000</value>

</constructor-arg>
</bean>

factory method

/bean

<bean id="paymentImplFactory"
class="demos.v6.PaymentEngineFactory"/>

<bean id="paymentImplOne"<bean id paymentImplOne
class="demos.v6.PaymentEngineImpl"
factory-bean="paymentImplFactory"
factory-method="instance">

<constructor-arg index="0">
l h / l

Bean creation via
factory object <value>www.somewhere.com</value>

</constructor-arg>
<constructor-arg index="1">

<value>5000</value>
</constructor-arg>

factory object

© Garth Gilmour 2008

g
</bean>

S t f C ll tiSupport for Collections

 Spring makes it straightforward to inject collections
 List, sets and maps and properties can all be declared

 The list and set types do not map directly to collections The list and set types do not map directly to collections
 Spring will create an array, ‘java.util.Collection’, ‘java.util.Set’ or

‘java.util.List’ based on the type of the parameter
 List members can be ‘value’ ‘ref’ ‘bean’ ‘null’ or nested lists List members can be value , ref , bean , null or nested lists

Element Description
list Both declare a sequence of values only a list can contain duplicateslist Both declare a sequence of values, only a list can contain duplicates

set

map An implementation of ‘java.util.Map’ where the keys are strings

props An implementation of ‘java.util.Properties’ - both keys and values are strings

© Garth Gilmour 2008

p p p j p y g

<bean id="pricingEngine" class="demos.v9.PricingEngineMock">
< t " i i Di tA t"><property name="minimumDiscountAmount">

<value>500</value>
</property>
<property name="percentageDiscount">

<value>10</value>
</property>
<property name="prices">

<list>
<value>1.20</value>
<value>3 40</value><value>3.40</value>
<value>5.60</value>

</list>
</property>

</bean>
<bean id="paymentEngine" class="demos.v9.PaymentEngineMock"/>
<bean id="stockCheckEngine" class="demos.v9.StockCheckEngineMock">

<property name="testData">
<map>

<entry key="ABC123" value="10"/><entry key ABC123 value 10 />
<entry key="DEF456" value="20"/>
<entry key="GHI789" value="30"/>

</map>
</property>

/b

© Garth Gilmour 2008

</bean>
<bean id="shopWithMocks" class="demos.v9.Shop" autowire="byName"/>

S t f A t i iSupport for Autowiring

 Autowiring is a powerful but scary feature
 Spring implicitly works out which bean should be passed as the

parameter in a constructor or propertyp p p y
 There are four different types of autowiring

 ‘byName’ matches bean names to property names
 The bean called ‘shop’ is mapped to the method ‘setShop’ The bean called shop is mapped to the method setShop

 ‘byType’ matches bean types to property parameter types
 If ‘setShop’ takes a parameter of interface type ‘Shop’ then the bean

that implements that interface will be injected (only one can exist)
 ‘constructor’ matches bean types to constructor parameter types
 ‘autodetect’ tries to match by constructor first and then by type

© Garth Gilmour 2008

<bean class="demos v7 PricingEngineMock"><bean class="demos.v7.PricingEngineMock">
<property name="minimumDiscountAmount">

<value>500</value>
</property>
<property name="percentageDiscount">Autowiring y g

<value>10</value>
</property>

</bean>
<bean class="demos.v7.PaymentEngineMock"/>
<bean class="demos v7 StockCheckEngineMock"/>

Autowiring
By Type

<bean class= demos.v7.StockCheckEngineMock />
<bean id="shopWithMocks" class="demos.v7.Shop" autowire="byType"/>

<bean id="pricingEngine" class="demos.v8.PricingEngineMock">
<property name="minimumDiscountAmount">

<value>500</value>
</property>
<property name="percentageDiscount">

<value>10</value>Autowiring <value>10</value>
</property>

</bean>
<bean id="paymentEngine" class="demos.v8.PaymentEngineMock"/>
<bean id="stockCheckEngine" class="demos.v8.StockCheckEngineMock"/>

b id " h WithM k " l "d 8 Sh " t i "b N "/

By Name

© Garth Gilmour 2008

<bean id="shopWithMocks" class="demos.v8.Shop" autowire="byName"/>

U i I h it i D fi itiUsing Inheritance in Definitions

 Autowiring is one way of minimizing configuration
 Another way is declaring parent definitions

 One definition can be the specialization of another One definition can be the specialization of another
 The base definition doesn’t need any extra markup

 However you will probably want to declare it with ‘abstract=true’ to
prevent Spring generating instancesprevent Spring generating instances

 The derived definition uses ‘parent=baseBean’
 It can add its own properties and override inherited ones

 Clients instantiate derived definitions as normal
 The use of inheritance does not affect client code

© Garth Gilmour 2008

<!-- The parent bean declaration -->
<bean id="shopWithMocks" abstract="true" class="demos.v10.Shop">

<property name="paymentEngine"><ref bean="paymentEngine" /></property>
<property name="stockCheckEngine"><ref bean="stockCheckEngine" /></property>p p y g g p p y
<property name="pricingEngine"><ref bean="pricingEngine" /></property>

</bean>

<!-- Three derived declarations -->
<bean id="testShop1" parent="shopWithMocks"><bean id= testShop1 parent= shopWithMocks >

<property name="shopName">
<value>Test Shop No 1</value>

</property>
</bean>
<bean id="testShop2" parent="shopWithMocks" >

<property name="shopName">
<value>Test Shop No 2</value>

</property>
</bean>/bean
<bean id="testShop3" parent="shopWithMocks" >

<property name="shopName">
<value>Test Shop No 3</value>

</property>
/b

© Garth Gilmour 2008

</bean>

Extra Dependency
Injection Features

Power Features in Spring

garth@ggilmour.comSample Content © Garth Gilmour 2008

Additi l D d I j tiAdditional Dependency Injection

 Spring offers advanced dependency injection features:
 Derived beans can override inherited settings
 Method definitions in beans can be replaced Method definitions in beans can be replaced
 Property editors can be used to pass user defined types into

setter methods and constructors
 Information can be read from properties filesp p
 Beans can be made aware of the Spring framework

 By listening for events or having context objects injected
 The dependency injection process can be customizedp y j p

 By creating post-processors for beans and bean factories
 Beans can be written using scripting languages

© Garth Gilmour 2008

O idi I h it d P tiOverriding Inherited Properties

 We have already seen inheritance in bean definitions
 This is normally done to reuse shared properties

 There are two ways of customizing inheritance There are two ways of customizing inheritance
 A bean can override inherited properties

 In the same manner as method overriding in Java
 You can also override ‘init-method’ and ‘destroy-method’ You can also override init-method and destroy-method

 A bean declaration does not have to reference a class
 It can simply be used to hold common properties
 The declaration always needs to have “abstract=true” The declaration always needs to have abstract true
 The classes whose bean declarations inherit from such a

declaration do not need to share a common base class

© Garth Gilmour 2008

<bean id="sharedProperties" abstract="true">
<property name="number"><value>10</value></property>
<property name="street"><value>Arcatia Road</value></property>
<property name="postcode"><value>BT37ABC</value></property>

</bean>

<bean id="baseEmployee" parent="sharedProperties" abstract="true"
class="demos.overriding.Employee">class demos.overriding.Employee

<property name="title"><value>GeneralStaff</value></property>
<property name="salary"><value>20000.0</value></property>

</bean>

<b id " l " t "b E l "><bean id="employee" parent="baseEmployee">
<property name="title"><value>SoftwareDeveloper</value></property>
<property name="fullName"><value>Dave Jones</value></property>

</bean>

<bean id="company" parent="sharedProperties" class="demos.overriding.Company">
<property name="vatRegistration"><value>ABC123</value></property>
<property name="taxes"><value>4500.25</value></property>

</bean>

© Garth Gilmour 2008

R l i B M th d D fi itiReplacing Bean Method Definitions

 Spring can replace the definitions of methods
 A method invocation can be redirected away from the intended

bean and towards a different one
 This feature is enabled via proxies

 Spring creates a new class that implements the same interface
as your bean and returns an instanceas your bean and returns an instance

 Proxies are the key to implementing AOP
 In order to replace a method:

 Place a ‘replaced method’ tag in the bean declaration Place a replaced-method tag in the bean declaration
 Create a class that implements the ‘MethodReplacer’ interface

 The new functionality is placed in the ‘reimplement’ method

© Garth Gilmour 2008

R l i B M th d D fi itiReplacing Bean Method Definitions

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd">

<bean id="addReplacer" class="demos.altering.methods.MathsReplacer"/>

<bean id="maths1" class="demos.altering.methods.MathsImpl"/>bean id maths1 class demos.altering.methods.MathsImpl /

<bean id="maths2" class="demos.altering.methods.MathsImpl">
<replaced-method name="addNumbers" replacer="addReplacer">

<arg-type>int</arg-type>
< t >i t</ t ><arg-type>int</arg-type>

</replaced-method>
</bean>

</beans>

© Garth Gilmour 2008

R l i B M th d D fi itiReplacing Bean Method Definitions
public interface Maths {

int addNumbers(int no1, int no2);
}

public class MathsImpl implements Maths {
public int addNumbers(int no1, int no2) {

return no1 + no2;
}

}}

public class MathsReplacer implements MethodReplacer {
public Object reimplement(Object target, Method method,

Object[] params) throws Throwable {Object[] params) throws Throwable {
int param1 = Integer.parseInt(params[0].toString());
int param2 = Integer.parseInt(params[1].toString());
return param1 * param2;

}

© Garth Gilmour 2008

}

U i J B P t EditUsing JavaBean Property Editors

 Property Editors are part of the JavaBeans specification
 They allow user-defined types to be used in setter methods
 This feature was intended for GUI tools and is rarely used This feature was intended for GUI tools and is rarely used

 A Property Editor class extends ‘PropertyEditorSupport’
 The ‘setAsText’ method takes a string, parses it and uses the

extracted data to populate a user-defined typeextracted data to populate a user-defined type
 This UDT instance is then passed back via ‘setValue’

 In order to register Property Editors with Spring
D l i t f ‘C t Edit C fi ’ i th b fil Declare an instance of ‘CustomEditorConfigurer’ in the bean file

 Populate the ‘customEditors’ property with a map
 Where the key is the UDT name and the value is a bean class

© Garth Gilmour 2008

<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd">

<bean class="org.springframework.beans.factory.config.CustomEditorConfigurer">
<property name="customEditors">

<map>
<entry key="demos.editors.Address">

b id " dd Edit " l "d dit Add P t Edit "/<bean id="addressEditor" class="demos.editors.AddressPropertyEditor"/>
</entry>

</map>
</property>

</bean>

<bean id="employee" class="demos.editors.Employee">
<property name="fullName">

<value>Dave Smith</value>
</property></property>
<property name="address">

<value>10#Arcatia Road#Belfast#BT37 AB7</value>
</property>

</bean>

© Garth Gilmour 2008

</beans>

public class AddressPropertyEditor extends PropertyEditorSupport {
@Override
public String getAsText() {public String getAsText() {

return getValue().toString();
}
@Override
public void setAsText(String input) throws IllegalArgumentException {

Pattern pattern = Pattern.compile("([0-9]{2})#([A-Za-z]+)#([A-Za-z]+)#([A-Z0-9]+)");
Matcher matcher = pattern.matcher(input.trim());
if(matcher.matches()) {

int tmpNumber = Integer.parseInt(matcher.group(1));
String tmpStreet = matcher group(2);String tmpStreet = matcher.group(2);
String tmpCity = matcher.group(3);
String tmpPostcode = matcher.group(4);
Address address = new Address(tmpNumber,tmpStreet,tmpCity,tmpPostcode);
setValue(address);

}
}

}

© Garth Gilmour 2008

R di I f F P t FilReading Info From Property Files

 You can use property files in a Spring based system:
 Perhaps because they were part of the pre-Spring architecture
 Or in order to allow non-developers to change system settings Or in order to allow non developers to change system settings

 There are two ways of including property files
 By declaring an instance of ‘PropertyPlaceholderConfigurer’
 By using the ‘property placeholder’ schema extension By using the property-placeholder’ schema extension

 The value is a comma separated list of file paths

 Properties are accessed via the ‘${name}’ syntax
 The same syntax as ANT files and JSP EL

© Garth Gilmour 2008

<bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
<!-- <property name="location" value="app.properties" /> -->
<property name="locations">

<list>list
<value>demos/properties/app1.properties</value>
<value>demos/properties/app2.properties</value>
<value>demos/properties/app3.properties</value>
<value>demos/properties/app4.properties</value>

</li t></list>
</property>

</bean>

<bean name="employee" class="demos.properties.Employee">p y p p p y
<property name="name" value="${employee.name}"/>
<property name="age" value="${employee.age}"/>
<property name="department" value="${employee.dept}"/>
<property name="address" value="${employee.address}"/>
<property name="salary" value="${employee salary}"/><property name= salary value= ${employee.salary} />
<property name="married" value="${employee.isMarried}"/>
<property name="holidaysRemaining" value="${employee.holidaysRemaining}"/>
<property name="sickDaysThisYear" value="${employee.sickDaysThisYear}"/>

</bean>

© Garth Gilmour 2008

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xsi:schemaLocation="http://www springframework org/schema/beansxsi:schemaLocation http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-2.5.xsd">

t t t l h ld l ti "d / ti / 1 ti<context:property-placeholder location="demos/properties/app1.properties,
demos/properties/app2.properties,
demos/properties/app3.properties"/>

<bean name="employee" class="demos.properties.Employee">p y p p p y
<property name="name" value="${employee.name}"/>
<property name="age" value="${employee.age}"/>
<property name="department" value="${employee.dept}"/>
<property name="address" value="${employee.address}"/>
<property name="salary" value="${employee salary}"/><property name= salary value= ${employee.salary} />
<property name="married" value="${employee.isMarried}"/>
<property name="holidaysRemaining" value="${employee.holidaysRemaining}"/>
<property name="sickDaysThisYear" value="${employee.sickDaysThisYear}"/>

</bean>

© Garth Gilmour 2008

</beans>

C ti S i A BCreating Spring-Aware Beans

 All the Beans we have built so far are POJO’s
 They have no knowledge of the container that is hosting them

 It is possible to make beans aware of the container It is possible to make beans aware of the container
 By implementing callback interfaces provided by Spring

 There are three callback interfaces:
 ‘BeanNameAware’ enables a bean to discover its name
 ‘BeanFactoryAware’ enables a bean to access the factory

 E.g. to discover if a bean exists and what scope it is in
 ‘ApplicationContextAware’ provides access to the context

 The bean can explore the full framework configuration

© Garth Gilmour 2008

public class MyBeanOne implements BeanNameAware {
public void setBeanName(String name) {

this.name = name;
}
public void sayName() {public void sayName() {

System.out.println("My name is: " + name);
}
private String name;

}

public class MyBeanThree implements ApplicationContextAware {
public void setApplicationContext(ApplicationContext context) throws BeansException {

this context = context;this.context = context;
}
public void listBeans() {

System.out.println("Deployed beans are: ");
for(String name : context.getBeanDefinitionNames()) {

System.out.printf("\t%s of type %s\n", name, context.getType(name).getName());
}

}
private ApplicationContext context;

}

© Garth Gilmour 2008

}

public class MyBeanTwo implements BeanFactoryAware {
public void setBeanFactory(BeanFactory factory) throws BeansException {p y(y y) p {

this.factory = factory;
}
public void printBeanDetails(String beanName) {

if(factory.containsBean(beanName)) {
System out printf("%s is an instance of %s"System.out.printf(%s is an instance of %s ,

beanName,factory.getType(beanName).getName());
if(factory.isPrototype(beanName)) {

System.out.println(" in prototype scope");
} else {

System.out.println(" in singleton scope");
}

}
}
private BeanFactory factory;private BeanFactory factory;

}

© Garth Gilmour 2008

C t i i D d I j tiCustomizing Dependency Injection

 The Spring framework can be customized
 By writing post processor components that perform extra work

 There are two types of post processoryp p p
 A bean post processor can modify a bean both before and after

its properties are set and init method called
 A bean factory post processor can modify the tree of bean

declarations created by reading from the XML filedeclarations created by reading from the XML file
 This could be used to add extra beans into the scope of the factory
 E.g. by finding all the classes that implement a particular interface

 Registering post processors with Spring is easy Registering post processors with Spring is easy
 Any declared bean that implements ‘BeanPostProcessor’ or

‘BeanFactoryPostProcessor’ will be found and registered

© Garth Gilmour 2008

public class MyBeanFactoryPostProcessor implements BeanFactoryPostProcessor {

public void postProcessBeanFactory(ConfigurableListableBeanFactory factory)
th B E ti {throws BeansException {

System.out.println("MyBeanFactoryPostProcessor.postProcessBeanFactory called!");
}

}

public class MyBeanPostProcessor implements BeanPostProcessor {
public Object postProcessAfterInitialization(Object bean, String name) throws BeansException {

System.out.println("After init called for " + name + " of type " + bean.getClass().getName());
t breturn bean;

}
public Object postProcessBeforeInitialization(Object bean, String name) throws BeansException {

System.out.println("Before init called for " + name + " of type " + bean.getClass().getName());
return bean;;

}

}

© Garth Gilmour 2008

C ti B Vi S i tCreating Beans Via Scripts

 Scripting is becoming a key part of the Java platform
 As the language itself becomes more and more complex

 Spring supports beans implemented using scripts Spring supports beans implemented using scripts
 At present ‘JRuby’,’Groovy’ and ‘BeanShell’ are supported

 The details of configuring and using each are slightly different
 The scripts can be placed in two locations The scripts can be placed in two locations

 Either in separate files or inline in the Spring configuration file

 There is one major advantage to scripted beans
Th f k l d i t h th fil i difi d The framework can reload scripts when the file is modified

 This creates ‘refreshable beans’ whose implementation can be
changed without needing to restart the application

© Garth Gilmour 2008

