
Understanding 
Assemblies

.NET Architecture in Depth

© Garth Gilmour 2008Sample Content



M d l d A bliModules and Assemblies

 A .NET program has three constituents
 Intermediate Language, Metadata and Resources
 The compiler creates these as a stream of bytes The compiler creates these as a stream of bytes

 The compiler output is written into a ‘Module’
 This can be saved as a ‘.netmodule’ file
 To do this use the ‘/t:module’ compiler option To do this use the /t:module’ compiler option
 Modules can be compiled separately and combined later

 A Module may contain the ‘initial entry point’
 The function that is used to launch the program
 This is specified in IL using the ‘.entrypoint’ directive

© Garth Gilmour 2008



Th E t P i t Di tiThe Entry Point Directive
bl t lib {}.assembly extern mscorlib {}

.assembly Hello {}

.class public auto ansi SayHello extends [mscorlib]System.Object {
th d bli t ti id F B () il d {.method public static void FooBar() il managed {
//entry point declaration (one per assembly)
.entrypoint
//load a string onto the execution stack
ld t "H ll Th "ldstr "Hello There"
//call a method from another assembly
call void [mscorlib]System.Console::WriteLine(string)
//return from this method

tret
}

}

© Garth Gilmour 2008



M d l d A bliModules and Assemblies

 An Assembly is a collection of Modules
 These use the NT Portable Executable file format

 A ‘Managed PE’ file contains A Managed PE  file contains
 The CLR header

 Which version of the CLR this program targets
 The metadata The metadata

 Tables describing the assembly and its dependencies
 The Intermediate Language

 Stored in a section of the PE previously kept for text Stored in a section of the PE previously kept for text

 Individual Modules can be loaded from an Assembly
 Useful if you are loading types over a network

© Garth Gilmour 2008



T f A blTypes of Assembly
 Command line executables

 A program which runs in a console window
 Built by using the ‘/t:exe’ compiler option

 GUI based executables 
 A progam which creates one or more windows
 Built by using the ‘/t:winexe’ compiler option

 Dynamic libraries
 A repository for types to be used by the program(s)
 Built by using the ‘/t:library’ compiler option
 A library cannot be started directly

 Visual Studio lets you specify a program for debugging
 See ‘Project→Properites→Configuration Properties→Debugging’

© Garth Gilmour 2008



M d l d A bliModules and Assemblies

 An Assembly can contain multiple Modules which were 
written using more than one .NET language
 In practice this option is rarely used In practice this option is rarely used
 An Assembly usually maps to a single Module

 Assemblies are often built from different languages
 Interoperability is guaranteed via the Common Type System Interoperability is guaranteed via the Common Type System 

 Assemblies can be dynamically generated
 At the low level via the types of ‘System.Reflection.Emit’
 At a high level via the CodeDOM library (which builds an AST)

 This is very useful for creating templates and code wizards

© Garth Gilmour 2008



N i A bliNaming Assemblies
 .NET assemblies are strongly named

 They are not located based solely on a filename
 An assembly name is built from four elementsy

 The filename of the assembly
 A four part version number
 The country/language code
 The public key of the company

 Only the assembly filename is mandatory
 There are consequences for leaving other parts out

 Assembly names can be discovered in code
 Calling ‘Assembly.GetName’ returns an ‘AssemblyName’ object

© Garth Gilmour 2008



N d St NNames and Strong Names

 The name part of a strong name is the filename
 Minus the file extension (usually ‘.dll’ or ‘.exe’)
 This is automatically set by the compiler This is automatically set by the compiler

 This is sometimes referred to as the ‘friendly name’
 Used in isolation these always lead to deployment problems

Th f k lib i ft The framework names libraries after namespaces
 E.g. the classes for manipulating XML live in the namespace 

‘System.Xml’ which is in turn packaged into ‘System.Xml.dll’
Thi i i l t d l t bl i This is a simple namespace-to-module-to-assembly mapping
 Although it takes some time to get use to filenames with periods

 Whether this makes sense depends entirely on your design

© Garth Gilmour 2008



V i i d St NVersioning and Strong Names

 An Assembly version number has four parts
 It is expressed as ‘Major.Minor.Build.Revision’
 If not set the version number is ‘0 0 0 0’ If not set the version number is 0.0.0.0

 This is set in code using ‘AssemblyVersionAttribute’
 E.g. ‘[assembly:AssemblyVersion(“1.2.34.567")] ’
 Only the major build number is mandatory Only the major build number is mandatory

 Omitting any of the other parts causes them to be set to zero
 The build and revision numbers can both be specified as ‘*’

 The build no is set to the number of days since ‘01/02/2000’ The build no is set to the number of days since 01/02/2000
 The revision no is set to half the no of seconds since midnight

© Garth Gilmour 2008



C lt d St NCulture and Strong Names

 Assemblies holding IL never have a Culture Code
 Instead they are said to be ‘culture-neutral’

 Only Assemblies holding resources have a Culture Code Only Assemblies holding resources have a Culture Code 
 These are called ‘Resource-Only’ or ‘Satellite’ Assemblies

 The culture is set via ‘AssemblyCultureAttribute’
 The code is in RFC 1766 format (e.g. ‘en-US’)
 Each version of your application will have may different copies of 

the satellite assemblies, one for each locale you support

© Garth Gilmour 2008



E ti d St NEncryption and Strong Names
 Assemblies can be digitally signed

 By generating hash values from their content
 Signed assemblies must include a public keyg p y

 Which is used to verify that hash values are authentic
 Usually only a ‘Public Key Token’ is used in the name

 This is an 8 byte hash value of the keyy y
 The key itself is 128 bytes in length
 In theory this is bad for security

 Keys are the only thing that guarantees uniquenessy y g g q
 Vendors could easily duplicate the name, version and culture

 Such as ‘utils.dll’ version 1.1 or ‘msgs.dll’ with culture code en-US

© Garth Gilmour 2008



D ibi St NDescribing Strong Names
 A Strong Name can be specified as a string

 This is for use in code or configuration files
 The string is comma separated with the filename g p

followed by ‘name=value’ pairs for the other parts
 Because as we have seen only the name is mandatory

 A string with items omitted is ‘partially specified’g p y p
 Any values for the ommitted parts are acceptable

 Culture can be set to ‘Neutral’ and public key to ‘Null’
 This is NOT the same as a ‘partially specified’ stringp y p g

MyLib, Version=1.2
MyLib, Version=1.2, Culture=en-US, PublicKeyToken=123456789
MyLib Version=1 2 Culture=Neutral PublicKeyToken=Null

© Garth Gilmour 2008

MyLib, Version=1.2, Culture=Neutral, PublicKeyToken=Null



D ibi St N i C dDescribing Strong Names in Code
class Tester {class Tester {

static void Main(string[] args) {
//Get the application domain for the current thread
AppDomain current = AppDomain.CurrentDomain;
//Add a new handler for load events//Add a new handler for load events
current.AssemblyLoad += new AssemblyLoadEventHandler(loadEventHandler);
//Load an assembly into the current domain
Assembly assembly = current.Load("System.Xml, 

Version=1 0 5000 0Version 1.0.5000.0, 
Culture=Neutral, 
PublicKeyToken=b77a5c561934e089");

}
//Triggered when we load a new assembly//Triggered when we load a new assembly
static void loadEventHandler(object sender, AssemblyLoadEventArgs args) {

Console.WriteLine("Just Loaded {0}",args.LoadedAssembly.GetName().Name);
}

}

© Garth Gilmour 2008

}



A bl D d iAssembly Dependencies

 Every assembly stores its metadata in a ‘Manifest’
 This can be examined using the ‘ildasm’ tool

 Two types of information are stored in the ‘Manifest’ Two types of information are stored in the Manifest
 Information about the current Assembly and its Modules
 Descriptions of external Assemblies that are required

D d i ll f t f th t Dependencies can use all four parts of the strong name
 This can be altered by information in configuration files

 A reference to ‘mscorlib’ is at the top of every manifesty
 Because this is the Assembly in which the CTS resides

© Garth Gilmour 2008



E t l D d iExternal Dependencies

.assembly extern mscorlib
{

.publickeytoken = (B7 7A 5C 56 19 34 E0 89 )                         // .z\V.4..
1 0 3300 0.ver 1:0:3300:0

}
.assembly extern System
{

bli k t k (B7 7A 5C 56 19 34 E0 89 ) // \V 4.publickeytoken = (B7 7A 5C 56 19 34 E0 89 )                         // .z\V.4..
.ver 1:0:3300:0

}
.assembly extern System.Data
{{

.publickeytoken = (B7 7A 5C 56 19 34 E0 89 )                         // .z\V.4..

.ver 1:0:3300:0
}

© Garth Gilmour 2008



Th C t A blThe Current Assembly

.assembly BuildingDataSets
{

// --- The following custom attribute is added automatically, do not uncomment -------
// t i t id [ lib]S t Di ti D b bl Att ib t t (b l//  .custom instance void [mscorlib]System.Diagnostics.DebuggableAttribute::.ctor(bool,
//                                                                                bool) = ( 01 00 01 01 00 00 ) 
.hash algorithm 0x00008004
.ver 1:0:1617:32277

}}
.module BuildingDataSets.exe
// MVID: {2CC30E23-4B5D-4D24-A117-A99ED07960AA}
.imagebase 0x00400000
subsystem 0x00000003.subsystem 0x00000003
.file alignment 4096
.corflags 0x00000001
// Image base: 0x06c40000

© Garth Gilmour 2008



Di it l Si tDigital Signatures
 .NET relies on asymmetric cryptography

 More commonly described as public/private key pairs
 The public key is distributed and the private key secured

 Data encrypted with the private key can only be 
decrypted with the public key
 This lets Alice authenticate that a message comes from Bob

 Data encrypted with the public key can only be 
decrypted with the private key
 This enables Alice to securely send message to Bob

 The procedures can be combined
 Bob might sign a message with his private key and then encrypt 

it using his copy of Alice’s public key

© Garth Gilmour 2008



Si i d E ti MSigning and Encrypting Messages

Message Envelope

Alice Private

Bob Public

BobAlice

Alice
P i

Bob

Data
a

Message Envelope

Private

Alice
Public

Private

Bob
Public

Alice Public

Data
Bob Private

© Garth Gilmour 2008



G ti K d H hi D tGenerating Keys and Hashing Data

 The ‘sn.exe’ tool generates keys
 ‘sn -k out.snk’ generates a file containing a new key pair
 ‘sn -p out.snk public.snk’ makes a copy of the public key and 

l it i t filplaces it in a separate file
 The key file is specified to the compiler by using the 

‘AssemblyKeyFile’ attribute
Th i t k ill b d t i th A bl The private key will be used to sign the Assembly

 The public key will be used to generate the Public Key Token
 Signing an Assembly can be postponed

D l th ‘A bl D l Si ’ tt ib t t l Developers can use the ‘AssemblyDelaySign’ attribute to leave 
space for the signature and hence only require the public key

 The keyholder can add the signature at a later time via ‘sn -R’

© Garth Gilmour 2008



G ti K d H hi D tGenerating Keys and Hashing Data

[assembly:AssemblyKeyFile(“..\\..\\out.snk")]
[assembly:AssemblyDelaySign(false)]

Attaching a Signature to an Assembly 
out.snk

Private [ y y y g ( )]

[assembly:AssemblyKeyFile(“ \\ \\public snk")]
Delay Signing an Assembly Public

Key

Key

[assembly:AssemblyKeyFile( ..\\..\\public.snk )]
[assembly:AssemblyDelaySign(true)]

sn -R MyApp.exe out.snk 
public.snk

Public
Key

© Garth Gilmour 2008



Type LoadingType Loading

The Loading Process

© Garth Gilmour 2008Sample Content



L di T I t th CLRLoading Types Into the CLR

 The ‘CLR Loader’ loads types into the virtual machine
 It is up to the deployer to ensure that the strong names of 

assemblies can be mapped to physical files pp p y
 Types are usually loaded on first use

 ‘Just In Time’ compilation means that unloaded types only need 
to be resolved when the program first references themto be resolved when the program first references them

 Resolving an assembly is a well defined process
 A series of locations are each checked in turn
 The first matching assembly will be loaded into the CLR The first matching assembly will be loaded into the CLR

© Garth Gilmour 2008



L di T Vi th DEVPATHLoading Types Via the DEVPATH

 This is a hack that was designed to ease development
 It is deprecated in version 2 of the framework so avoid it…

 A ‘DEVPATH’ environment variable can be specified A DEVPATH  environment variable can be specified
 This specifies a folder to be checked for Assemblies before all 

other locations (the path must end with a slash)
 This is an easy way to test: This is an easy way to test:

 Libraries shared by multiple programs 
 Delay-signed assemblies before signing

 This feature must be explicitly enabled This feature must be explicitly enabled 
 In the machine wide configuration file

© Garth Gilmour 2008



L di T Vi th GACLoading Types Via the GAC
 In a production environment the GAC is searched first

 The ‘Global Assembly Cache’ is a repository of Assemblies
 Assemblies are placed there to be accessed by any other 

li ti i th t hiapplication running on the current machine
 The GAC is only searched if the target assembly is 

strongly named (including the digital signature)
O l t l d li ti b l d i th GAC t Only strongly named applications can be placed in the GAC to 
avoid corrupting the cache with multiple implementations

 The reference name must be complete for the GAC to be used
 The signature is validated when an Assembly is added The signature is validated when an Assembly is added

 This removes the need to perform that check at runtime
 Which provides a small efficiency on each Assembly load

© Garth Gilmour 2008



L di T Vi th C d BLoading Types Via the Code Base

 The next location to be searched for an Assembly is 
determined by code base hints
 These are mappings found in the machine and application 

ifi fi ti filspecific configuration files
 The name of an assembly is mapped to a file path or URL
 Each version of the assembly can have its own mapping

Once again the assemblies must be strongly named Once again the assemblies must be strongly named
 So that an exact match can be made

 Assemblies downloaded over the network are cached
Th ill b t h f h There will be a separate cache for each user

 The assemblies count as ‘mobile code’ and therefore are run 
with limited permissions

© Garth Gilmour 2008



L di T Vi P biLoading Types Via Probing
 The final location searched for Assemblies is the 

installation directory and its subfolders
 This is referred to as the ‘APPBASE’ directory
 The process of searching it is referred to as ‘probing’

 Assemblies in the current directory will always be found
 Those in subfolders will be found if 

 The subfolder has the same name as the Assembly 
 The folder is enabled for probing in the config file

 Extra probing is done for Assemblies with a culture code
If th lib ‘ dll’ h lt d f ‘ US’ th th If the library ‘msgs.dll’ has a culture code of ‘en-US’ then the 
loader will look for an ‘en-US’ folder in the ‘APPBASE’ directory

 This makes it convenient to bundle multiple Satellite Assemblies

© Garth Gilmour 2008



L di T Vi P biLoading Types Via Probing

C:\dev\myapp\bin\LinkedList.dll
C:\dev\myapp\bin\LinkedList\LinkedList.dll

Culture Neutral Probing
C:\

dev

C:\dev\myapp\bin\LinkedList.exe
C:\dev\myapp\bin\LinkedList\LinkedList.dll

Culture Dependent Probing

myapp

bin

C:\dev\myapp\bin\en-US\LinkedList.dll
C:\dev\myapp\bin\en-US\LinkedList\LinkedList.dll
C:\dev\myapp\bin\en-US\LinkedList.exe
C:\dev\myapp\bin\en US\LinkedList\LinkedList dll

Culture Dependent Probing
MyApp.exe

LinkedList C:\dev\myapp\bin\en-US\LinkedList\LinkedList.dllLinkedList

© Garth Gilmour 2008



Discover Dependency

Resolve Assembly Name [Not Strongly Named]y
From Current Manifest

[Strongly Named]

Search The Global 
Assembly Cache (GAC)

[Not Found]

[Found]

Load Assembly Search Codebase Hints
(If Configured)

[ ]

[Found]

Probe APPBASE 
And Subfolders

[Not Found]

[Found]

© Garth Gilmour 2008

And Subfolders 



Th GAC i D t ilThe GAC in Detail
 The implementation if the GAC is irrelevant

 You should not write code that depends on it because its 
structure is likely to evolve with the framework

 The GAC is structured as a hierarchy of directories
 Unique directory paths are built by naming (sub)folders after the 

four parts of the Assemblies strong name
Thi di t t t t b d di tl This directory structure cannot be used directly
 It is maintained by a component loaded from ‘FUSION.dll’
 The shell extension ‘SHFUSION.DLL’ enables you to view the 

contents of the GAC via Windows Explorercontents of the GAC via Windows Explorer
 It is automatically triggered with you navigate to the top folder
 This is ‘<drive>\Windows\Assembly’ on Windows XP machines

© Garth Gilmour 2008



Th GAC I D t ilThe GAC In Detail
 The four components of the 

libraries ‘Strong Name’
 The key value is hashed

 The number of programs which 
depend on the Assembly 
 Used to prevent MSI from 

unloading a library still in useunloading a library still in use
 The physical path from which 

the Assembly was loaded
 Not visible if the library was ot s b e t e b a y as

loaded from an archive (MSI) 

© Garth Gilmour 2008



Th GAC I D t ilThe GAC In Detail

 Many different versions of an Assembly can coexist
 As long as their strong names differ (usually by version number)

 Assemblies are deployed and/or removed from the GAC Assemblies are deployed and/or removed from the GAC 
using the Global Assembly Cache Tool (gacutil.exe)
 Care must be taken when removing Assemblies that you only 

remove the version you want to (so always specify the full name)remove the version you want to (so always specify the full name)

Command Description
gacutil /i MyLib.dll Install MyLib.dllg y y

gacutil /u MyLib Uninstall all copies of MyLib.dll

gacutil /u MyLib, Version=2.6, PublicKeyToken=123ABC4 Uninstall just the specified assembly

gacutil /il assemblies.txt Install using assembly names from file

© Garth Gilmour 2008

gacutil /ul assemblies.txt Uninstall using assembly names from file



NET C fi ti Fil.NET Configuration Files

 All .NET configuration files have the same structure
 They are written as XML documents 
 The document element is called ‘<configuration>’ The document element is called <configuration>
 A number of sections can appear in the file

 The file format is extensible
 You can add extra sections to read in ‘magic numbers’ You can add extra sections to read in magic numbers’

 The main configuration files are:
 The machine wide configuration file
 The applications own configuration file

 This is slightly different for Web Applications

© Garth Gilmour 2008



Th M hi Wid C fi FilThe Machine Wide Config File

 There is a single ‘machine.config’ file located in the 
installation directory of the .NET framework
 This is usually ‘C:\Windows\Microsoft.NET\xxx\config’ This is usually C:\Windows\Microsoft.NET\xxx\config  
 Where xxx is the version number of the framework

 The ‘machine.config’ file contains the default settings for 
all aspects of each type of applicationall aspects of each type of application 
 Including which version of the CLR to use, where to locate 

assemblies and the locations of remote objects
 None of these settings are transferred when you distribute an None of these settings are transferred when you distribute an 

application by copying to another machine
 As it is used by all applications it should be edited with care

© Garth Gilmour 2008



Th ‘ hi fi ’ FilThe ‘machine.config’ File
<configuration><configuration>

<configSections>
<!-- Define processor classes for other sections in the file -->

</configSections>
<appSettings>

<!-- Contains application specific name/value pairs-->
</appSettings>
<system.diagnostics>

<!-- Specifies error handlers and levels of error tracing -->
</system diagnostics></system.diagnostics>
<system.net>

<!-- Specifies settings for network connections -->
</system.net>
<system.web>

! S ifi ASP NET ifi tti<!-- Specifies ASP.NET specific settings -->
</system.web>
<system.runtime.remoting>

<!-- Specifies remote objects and channels -->
</system.runtime.remoting>

© Garth Gilmour 2008

y g
</configuration>



Th A li ti C fi ti FilThe Application Configuration File

 Each application can have its own configuration file
 This must be found in the same directory as the application and 

have the same name plus ‘.config’p g
 So for example ‘MyApp.exe’ would use ‘MyApp.exe.config’

 ASP .NET Web Applications are slightly different
 The configuration file is always called ‘web config’ The configuration file is always called web.config
 Settings specific to Web Apps go inside ‘<system.web>’

 A Web App can have a ‘web.config’ file in every directory
 Usually there is a single file which is placed in the base directory Usually there is a single file which is placed in the base directory
 Files in subdirectories can override settings from parent files

© Garth Gilmour 2008



T L di d V i iType Loading and Versioning
 References to dependant assemblies are exact

 If you have a reference to version 1.0.0.0 of a library you will not 
automatically use version 1.1.0.0

 This complicates upgrades and maintenance
 If client applications have referenced outdated versions of your 

libraries and you cannot ask them to recompile their code
O l ti i t i li i One solution is to use version policies
 These are mappings which redirect an application from an older 

version of a library to a newer one
 Version policies are specified in the configuration files Version policies are specified in the configuration files

 You can also package the information into a separate DLL and 
deploying it into the GAC as a ‘Publisher Policy Assembly’

© Garth Gilmour 2008



V i i A bliVersioning Assemblies
MyApp.exe LinkedList.dll

(1.0.0.0)

LinkedList dll

<configuration>
<runtime>

MyApp.exe.config

LinkedList.dll
(1.1.0.0)

<runtime>
<!-- This could also be done in the machine configuration file -->
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

<dependentAssembly>
<assemblyIdentity name="LinkedList" culture="neutral" 

bli K T k "ff142b5 4 506d"/publicKeyToken="ff142b5ea4ae506d"/> 
<bindingRedirect oldVersion="1.0.0.0" newVersion="1.1.0.0"/>

</dependentAssembly> 
</assemblyBinding>

</runtime>

© Garth Gilmour 2008

</configuration>


