
Understanding
Assemblies

.NET Architecture in Depth

© Garth Gilmour 2008Sample Content

M d l d A bliModules and Assemblies

 A .NET program has three constituents
 Intermediate Language, Metadata and Resources
 The compiler creates these as a stream of bytes The compiler creates these as a stream of bytes

 The compiler output is written into a ‘Module’
 This can be saved as a ‘.netmodule’ file
 To do this use the ‘/t:module’ compiler option To do this use the /t:module’ compiler option
 Modules can be compiled separately and combined later

 A Module may contain the ‘initial entry point’
 The function that is used to launch the program
 This is specified in IL using the ‘.entrypoint’ directive

© Garth Gilmour 2008

Th E t P i t Di tiThe Entry Point Directive
bl t lib {}.assembly extern mscorlib {}

.assembly Hello {}

.class public auto ansi SayHello extends [mscorlib]System.Object {
th d bli t ti id F B () il d {.method public static void FooBar() il managed {
//entry point declaration (one per assembly)
.entrypoint
//load a string onto the execution stack
ld t "H ll Th "ldstr "Hello There"
//call a method from another assembly
call void [mscorlib]System.Console::WriteLine(string)
//return from this method

tret
}

}

© Garth Gilmour 2008

M d l d A bliModules and Assemblies

 An Assembly is a collection of Modules
 These use the NT Portable Executable file format

 A ‘Managed PE’ file contains A Managed PE file contains
 The CLR header

 Which version of the CLR this program targets
 The metadata The metadata

 Tables describing the assembly and its dependencies
 The Intermediate Language

 Stored in a section of the PE previously kept for text Stored in a section of the PE previously kept for text

 Individual Modules can be loaded from an Assembly
 Useful if you are loading types over a network

© Garth Gilmour 2008

T f A blTypes of Assembly
 Command line executables

 A program which runs in a console window
 Built by using the ‘/t:exe’ compiler option

 GUI based executables
 A progam which creates one or more windows
 Built by using the ‘/t:winexe’ compiler option

 Dynamic libraries
 A repository for types to be used by the program(s)
 Built by using the ‘/t:library’ compiler option
 A library cannot be started directly

 Visual Studio lets you specify a program for debugging
 See ‘Project→Properites→Configuration Properties→Debugging’

© Garth Gilmour 2008

M d l d A bliModules and Assemblies

 An Assembly can contain multiple Modules which were
written using more than one .NET language
 In practice this option is rarely used In practice this option is rarely used
 An Assembly usually maps to a single Module

 Assemblies are often built from different languages
 Interoperability is guaranteed via the Common Type System Interoperability is guaranteed via the Common Type System

 Assemblies can be dynamically generated
 At the low level via the types of ‘System.Reflection.Emit’
 At a high level via the CodeDOM library (which builds an AST)

 This is very useful for creating templates and code wizards

© Garth Gilmour 2008

N i A bliNaming Assemblies
 .NET assemblies are strongly named

 They are not located based solely on a filename
 An assembly name is built from four elementsy

 The filename of the assembly
 A four part version number
 The country/language code
 The public key of the company

 Only the assembly filename is mandatory
 There are consequences for leaving other parts out

 Assembly names can be discovered in code
 Calling ‘Assembly.GetName’ returns an ‘AssemblyName’ object

© Garth Gilmour 2008

N d St NNames and Strong Names

 The name part of a strong name is the filename
 Minus the file extension (usually ‘.dll’ or ‘.exe’)
 This is automatically set by the compiler This is automatically set by the compiler

 This is sometimes referred to as the ‘friendly name’
 Used in isolation these always lead to deployment problems

Th f k lib i ft The framework names libraries after namespaces
 E.g. the classes for manipulating XML live in the namespace

‘System.Xml’ which is in turn packaged into ‘System.Xml.dll’
Thi i i l t d l t bl i This is a simple namespace-to-module-to-assembly mapping
 Although it takes some time to get use to filenames with periods

 Whether this makes sense depends entirely on your design

© Garth Gilmour 2008

V i i d St NVersioning and Strong Names

 An Assembly version number has four parts
 It is expressed as ‘Major.Minor.Build.Revision’
 If not set the version number is ‘0 0 0 0’ If not set the version number is 0.0.0.0

 This is set in code using ‘AssemblyVersionAttribute’
 E.g. ‘[assembly:AssemblyVersion(“1.2.34.567")] ’
 Only the major build number is mandatory Only the major build number is mandatory

 Omitting any of the other parts causes them to be set to zero
 The build and revision numbers can both be specified as ‘*’

 The build no is set to the number of days since ‘01/02/2000’ The build no is set to the number of days since 01/02/2000
 The revision no is set to half the no of seconds since midnight

© Garth Gilmour 2008

C lt d St NCulture and Strong Names

 Assemblies holding IL never have a Culture Code
 Instead they are said to be ‘culture-neutral’

 Only Assemblies holding resources have a Culture Code Only Assemblies holding resources have a Culture Code
 These are called ‘Resource-Only’ or ‘Satellite’ Assemblies

 The culture is set via ‘AssemblyCultureAttribute’
 The code is in RFC 1766 format (e.g. ‘en-US’)
 Each version of your application will have may different copies of

the satellite assemblies, one for each locale you support

© Garth Gilmour 2008

E ti d St NEncryption and Strong Names
 Assemblies can be digitally signed

 By generating hash values from their content
 Signed assemblies must include a public keyg p y

 Which is used to verify that hash values are authentic
 Usually only a ‘Public Key Token’ is used in the name

 This is an 8 byte hash value of the keyy y
 The key itself is 128 bytes in length
 In theory this is bad for security

 Keys are the only thing that guarantees uniquenessy y g g q
 Vendors could easily duplicate the name, version and culture

 Such as ‘utils.dll’ version 1.1 or ‘msgs.dll’ with culture code en-US

© Garth Gilmour 2008

D ibi St NDescribing Strong Names
 A Strong Name can be specified as a string

 This is for use in code or configuration files
 The string is comma separated with the filename g p

followed by ‘name=value’ pairs for the other parts
 Because as we have seen only the name is mandatory

 A string with items omitted is ‘partially specified’g p y p
 Any values for the ommitted parts are acceptable

 Culture can be set to ‘Neutral’ and public key to ‘Null’
 This is NOT the same as a ‘partially specified’ stringp y p g

MyLib, Version=1.2
MyLib, Version=1.2, Culture=en-US, PublicKeyToken=123456789
MyLib Version=1 2 Culture=Neutral PublicKeyToken=Null

© Garth Gilmour 2008

MyLib, Version=1.2, Culture=Neutral, PublicKeyToken=Null

D ibi St N i C dDescribing Strong Names in Code
class Tester {class Tester {

static void Main(string[] args) {
//Get the application domain for the current thread
AppDomain current = AppDomain.CurrentDomain;
//Add a new handler for load events//Add a new handler for load events
current.AssemblyLoad += new AssemblyLoadEventHandler(loadEventHandler);
//Load an assembly into the current domain
Assembly assembly = current.Load("System.Xml,

Version=1 0 5000 0Version 1.0.5000.0,
Culture=Neutral,
PublicKeyToken=b77a5c561934e089");

}
//Triggered when we load a new assembly//Triggered when we load a new assembly
static void loadEventHandler(object sender, AssemblyLoadEventArgs args) {

Console.WriteLine("Just Loaded {0}",args.LoadedAssembly.GetName().Name);
}

}

© Garth Gilmour 2008

}

A bl D d iAssembly Dependencies

 Every assembly stores its metadata in a ‘Manifest’
 This can be examined using the ‘ildasm’ tool

 Two types of information are stored in the ‘Manifest’ Two types of information are stored in the Manifest
 Information about the current Assembly and its Modules
 Descriptions of external Assemblies that are required

D d i ll f t f th t Dependencies can use all four parts of the strong name
 This can be altered by information in configuration files

 A reference to ‘mscorlib’ is at the top of every manifesty
 Because this is the Assembly in which the CTS resides

© Garth Gilmour 2008

E t l D d iExternal Dependencies

.assembly extern mscorlib
{

.publickeytoken = (B7 7A 5C 56 19 34 E0 89) // .z\V.4..
1 0 3300 0.ver 1:0:3300:0

}
.assembly extern System
{

bli k t k (B7 7A 5C 56 19 34 E0 89) // \V 4.publickeytoken = (B7 7A 5C 56 19 34 E0 89) // .z\V.4..
.ver 1:0:3300:0

}
.assembly extern System.Data
{{

.publickeytoken = (B7 7A 5C 56 19 34 E0 89) // .z\V.4..

.ver 1:0:3300:0
}

© Garth Gilmour 2008

Th C t A blThe Current Assembly

.assembly BuildingDataSets
{

// --- The following custom attribute is added automatically, do not uncomment -------
// t i t id [lib]S t Di ti D b bl Att ib t t (b l// .custom instance void [mscorlib]System.Diagnostics.DebuggableAttribute::.ctor(bool,
// bool) = (01 00 01 01 00 00)
.hash algorithm 0x00008004
.ver 1:0:1617:32277

}}
.module BuildingDataSets.exe
// MVID: {2CC30E23-4B5D-4D24-A117-A99ED07960AA}
.imagebase 0x00400000
subsystem 0x00000003.subsystem 0x00000003
.file alignment 4096
.corflags 0x00000001
// Image base: 0x06c40000

© Garth Gilmour 2008

Di it l Si tDigital Signatures
 .NET relies on asymmetric cryptography

 More commonly described as public/private key pairs
 The public key is distributed and the private key secured

 Data encrypted with the private key can only be
decrypted with the public key
 This lets Alice authenticate that a message comes from Bob

 Data encrypted with the public key can only be
decrypted with the private key
 This enables Alice to securely send message to Bob

 The procedures can be combined
 Bob might sign a message with his private key and then encrypt

it using his copy of Alice’s public key

© Garth Gilmour 2008

Si i d E ti MSigning and Encrypting Messages

Message Envelope

Alice Private

Bob Public

BobAlice

Alice
P i

Bob

Data
a

Message Envelope

Private

Alice
Public

Private

Bob
Public

Alice Public

Data
Bob Private

© Garth Gilmour 2008

G ti K d H hi D tGenerating Keys and Hashing Data

 The ‘sn.exe’ tool generates keys
 ‘sn -k out.snk’ generates a file containing a new key pair
 ‘sn -p out.snk public.snk’ makes a copy of the public key and

l it i t filplaces it in a separate file
 The key file is specified to the compiler by using the

‘AssemblyKeyFile’ attribute
Th i t k ill b d t i th A bl The private key will be used to sign the Assembly

 The public key will be used to generate the Public Key Token
 Signing an Assembly can be postponed

D l th ‘A bl D l Si ’ tt ib t t l Developers can use the ‘AssemblyDelaySign’ attribute to leave
space for the signature and hence only require the public key

 The keyholder can add the signature at a later time via ‘sn -R’

© Garth Gilmour 2008

G ti K d H hi D tGenerating Keys and Hashing Data

[assembly:AssemblyKeyFile(“..\\..\\out.snk")]
[assembly:AssemblyDelaySign(false)]

Attaching a Signature to an Assembly
out.snk

Private [y y y g ()]

[assembly:AssemblyKeyFile(“ \\ \\public snk")]
Delay Signing an Assembly Public

Key

Key

[assembly:AssemblyKeyFile(..\\..\\public.snk)]
[assembly:AssemblyDelaySign(true)]

sn -R MyApp.exe out.snk
public.snk

Public
Key

© Garth Gilmour 2008

Type LoadingType Loading

The Loading Process

© Garth Gilmour 2008Sample Content

L di T I t th CLRLoading Types Into the CLR

 The ‘CLR Loader’ loads types into the virtual machine
 It is up to the deployer to ensure that the strong names of

assemblies can be mapped to physical files pp p y
 Types are usually loaded on first use

 ‘Just In Time’ compilation means that unloaded types only need
to be resolved when the program first references themto be resolved when the program first references them

 Resolving an assembly is a well defined process
 A series of locations are each checked in turn
 The first matching assembly will be loaded into the CLR The first matching assembly will be loaded into the CLR

© Garth Gilmour 2008

L di T Vi th DEVPATHLoading Types Via the DEVPATH

 This is a hack that was designed to ease development
 It is deprecated in version 2 of the framework so avoid it…

 A ‘DEVPATH’ environment variable can be specified A DEVPATH environment variable can be specified
 This specifies a folder to be checked for Assemblies before all

other locations (the path must end with a slash)
 This is an easy way to test: This is an easy way to test:

 Libraries shared by multiple programs
 Delay-signed assemblies before signing

 This feature must be explicitly enabled This feature must be explicitly enabled
 In the machine wide configuration file

© Garth Gilmour 2008

L di T Vi th GACLoading Types Via the GAC
 In a production environment the GAC is searched first

 The ‘Global Assembly Cache’ is a repository of Assemblies
 Assemblies are placed there to be accessed by any other

li ti i th t hiapplication running on the current machine
 The GAC is only searched if the target assembly is

strongly named (including the digital signature)
O l t l d li ti b l d i th GAC t Only strongly named applications can be placed in the GAC to
avoid corrupting the cache with multiple implementations

 The reference name must be complete for the GAC to be used
 The signature is validated when an Assembly is added The signature is validated when an Assembly is added

 This removes the need to perform that check at runtime
 Which provides a small efficiency on each Assembly load

© Garth Gilmour 2008

L di T Vi th C d BLoading Types Via the Code Base

 The next location to be searched for an Assembly is
determined by code base hints
 These are mappings found in the machine and application

ifi fi ti filspecific configuration files
 The name of an assembly is mapped to a file path or URL
 Each version of the assembly can have its own mapping

Once again the assemblies must be strongly named Once again the assemblies must be strongly named
 So that an exact match can be made

 Assemblies downloaded over the network are cached
Th ill b t h f h There will be a separate cache for each user

 The assemblies count as ‘mobile code’ and therefore are run
with limited permissions

© Garth Gilmour 2008

L di T Vi P biLoading Types Via Probing
 The final location searched for Assemblies is the

installation directory and its subfolders
 This is referred to as the ‘APPBASE’ directory
 The process of searching it is referred to as ‘probing’

 Assemblies in the current directory will always be found
 Those in subfolders will be found if

 The subfolder has the same name as the Assembly
 The folder is enabled for probing in the config file

 Extra probing is done for Assemblies with a culture code
If th lib ‘ dll’ h lt d f ‘ US’ th th If the library ‘msgs.dll’ has a culture code of ‘en-US’ then the
loader will look for an ‘en-US’ folder in the ‘APPBASE’ directory

 This makes it convenient to bundle multiple Satellite Assemblies

© Garth Gilmour 2008

L di T Vi P biLoading Types Via Probing

C:\dev\myapp\bin\LinkedList.dll
C:\dev\myapp\bin\LinkedList\LinkedList.dll

Culture Neutral Probing
C:\

dev

C:\dev\myapp\bin\LinkedList.exe
C:\dev\myapp\bin\LinkedList\LinkedList.dll

Culture Dependent Probing

myapp

bin

C:\dev\myapp\bin\en-US\LinkedList.dll
C:\dev\myapp\bin\en-US\LinkedList\LinkedList.dll
C:\dev\myapp\bin\en-US\LinkedList.exe
C:\dev\myapp\bin\en US\LinkedList\LinkedList dll

Culture Dependent Probing
MyApp.exe

LinkedList C:\dev\myapp\bin\en-US\LinkedList\LinkedList.dllLinkedList

© Garth Gilmour 2008

Discover Dependency

Resolve Assembly Name [Not Strongly Named]y
From Current Manifest

[Strongly Named]

Search The Global
Assembly Cache (GAC)

[Not Found]

[Found]

Load Assembly Search Codebase Hints
(If Configured)

[]

[Found]

Probe APPBASE
And Subfolders

[Not Found]

[Found]

© Garth Gilmour 2008

And Subfolders

Th GAC i D t ilThe GAC in Detail
 The implementation if the GAC is irrelevant

 You should not write code that depends on it because its
structure is likely to evolve with the framework

 The GAC is structured as a hierarchy of directories
 Unique directory paths are built by naming (sub)folders after the

four parts of the Assemblies strong name
Thi di t t t t b d di tl This directory structure cannot be used directly
 It is maintained by a component loaded from ‘FUSION.dll’
 The shell extension ‘SHFUSION.DLL’ enables you to view the

contents of the GAC via Windows Explorercontents of the GAC via Windows Explorer
 It is automatically triggered with you navigate to the top folder
 This is ‘<drive>\Windows\Assembly’ on Windows XP machines

© Garth Gilmour 2008

Th GAC I D t ilThe GAC In Detail
 The four components of the

libraries ‘Strong Name’
 The key value is hashed

 The number of programs which
depend on the Assembly
 Used to prevent MSI from

unloading a library still in useunloading a library still in use
 The physical path from which

the Assembly was loaded
 Not visible if the library was ot s b e t e b a y as

loaded from an archive (MSI)

© Garth Gilmour 2008

Th GAC I D t ilThe GAC In Detail

 Many different versions of an Assembly can coexist
 As long as their strong names differ (usually by version number)

 Assemblies are deployed and/or removed from the GAC Assemblies are deployed and/or removed from the GAC
using the Global Assembly Cache Tool (gacutil.exe)
 Care must be taken when removing Assemblies that you only

remove the version you want to (so always specify the full name)remove the version you want to (so always specify the full name)

Command Description
gacutil /i MyLib.dll Install MyLib.dllg y y

gacutil /u MyLib Uninstall all copies of MyLib.dll

gacutil /u MyLib, Version=2.6, PublicKeyToken=123ABC4 Uninstall just the specified assembly

gacutil /il assemblies.txt Install using assembly names from file

© Garth Gilmour 2008

gacutil /ul assemblies.txt Uninstall using assembly names from file

NET C fi ti Fil.NET Configuration Files

 All .NET configuration files have the same structure
 They are written as XML documents
 The document element is called ‘<configuration>’ The document element is called <configuration>
 A number of sections can appear in the file

 The file format is extensible
 You can add extra sections to read in ‘magic numbers’ You can add extra sections to read in magic numbers’

 The main configuration files are:
 The machine wide configuration file
 The applications own configuration file

 This is slightly different for Web Applications

© Garth Gilmour 2008

Th M hi Wid C fi FilThe Machine Wide Config File

 There is a single ‘machine.config’ file located in the
installation directory of the .NET framework
 This is usually ‘C:\Windows\Microsoft.NET\xxx\config’ This is usually C:\Windows\Microsoft.NET\xxx\config
 Where xxx is the version number of the framework

 The ‘machine.config’ file contains the default settings for
all aspects of each type of applicationall aspects of each type of application
 Including which version of the CLR to use, where to locate

assemblies and the locations of remote objects
 None of these settings are transferred when you distribute an None of these settings are transferred when you distribute an

application by copying to another machine
 As it is used by all applications it should be edited with care

© Garth Gilmour 2008

Th ‘ hi fi ’ FilThe ‘machine.config’ File
<configuration><configuration>

<configSections>
<!-- Define processor classes for other sections in the file -->

</configSections>
<appSettings>

<!-- Contains application specific name/value pairs-->
</appSettings>
<system.diagnostics>

<!-- Specifies error handlers and levels of error tracing -->
</system diagnostics></system.diagnostics>
<system.net>

<!-- Specifies settings for network connections -->
</system.net>
<system.web>

! S ifi ASP NET ifi tti<!-- Specifies ASP.NET specific settings -->
</system.web>
<system.runtime.remoting>

<!-- Specifies remote objects and channels -->
</system.runtime.remoting>

© Garth Gilmour 2008

y g
</configuration>

Th A li ti C fi ti FilThe Application Configuration File

 Each application can have its own configuration file
 This must be found in the same directory as the application and

have the same name plus ‘.config’p g
 So for example ‘MyApp.exe’ would use ‘MyApp.exe.config’

 ASP .NET Web Applications are slightly different
 The configuration file is always called ‘web config’ The configuration file is always called web.config
 Settings specific to Web Apps go inside ‘<system.web>’

 A Web App can have a ‘web.config’ file in every directory
 Usually there is a single file which is placed in the base directory Usually there is a single file which is placed in the base directory
 Files in subdirectories can override settings from parent files

© Garth Gilmour 2008

T L di d V i iType Loading and Versioning
 References to dependant assemblies are exact

 If you have a reference to version 1.0.0.0 of a library you will not
automatically use version 1.1.0.0

 This complicates upgrades and maintenance
 If client applications have referenced outdated versions of your

libraries and you cannot ask them to recompile their code
O l ti i t i li i One solution is to use version policies
 These are mappings which redirect an application from an older

version of a library to a newer one
 Version policies are specified in the configuration files Version policies are specified in the configuration files

 You can also package the information into a separate DLL and
deploying it into the GAC as a ‘Publisher Policy Assembly’

© Garth Gilmour 2008

V i i A bliVersioning Assemblies
MyApp.exe LinkedList.dll

(1.0.0.0)

LinkedList dll

<configuration>
<runtime>

MyApp.exe.config

LinkedList.dll
(1.1.0.0)

<runtime>
<!-- This could also be done in the machine configuration file -->
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

<dependentAssembly>
<assemblyIdentity name="LinkedList" culture="neutral"

bli K T k "ff142b5 4 506d"/publicKeyToken="ff142b5ea4ae506d"/>
<bindingRedirect oldVersion="1.0.0.0" newVersion="1.1.0.0"/>

</dependentAssembly>
</assemblyBinding>

</runtime>

© Garth Gilmour 2008

</configuration>

