Web Applications

The Structure and Components of
a JEE Web Application

Sample Content © Garth Gilmour 2008 garth@ggilmour.com

"
The Structure of a Web Application

m The application is deployed in a ‘Web Archive’
A structured jar file with the extension ‘.war’
Most containers will accept an unzipped folder
m The archive contains a complete Web Application
Servlet classes, JSP pages, libraries and other resources
Libraries in other archives can be referenced in the manifest
m Dynamic content is placed in a ‘WEB-INF’ folder

Static content can be placed anywhere outside of it
Java Server Pages count as static content

© Garth Gilmour 2008

V2 A
WAR WEB-INF XML
web.xml
) U A
lib JAR
utilities.jar
) o U N
classes ‘H: course :
- (
7’ —T T/
S A b| demos
! - - | e -
> F—>
L__tltr_nl___l MyServlet.class
index.html
T T N ———

b o — — —— — —

piccie.qgif

© Garth Gilmour 2008

" A
The Contents of WEB-INF

m The ‘WEB-INF’ folder should contain three things
A folder called ‘classes’
m Which contains a package hierarchy of class files
A folder called ‘lib’
m Which contains zero or more JAR files
A configuration file named ‘web.xml’
m Which the container uses to map Servlet classes to URL'’s

m A classpath is created for each web app

Containing the ‘classes’ folder and all the jars in ‘lib’
Container specific libraries will come first
m This can create dependency problems (e.g. XML Parsers)

© Garth Gilmour 2008

" J
The Deployment Descriptor

m The ‘web.xml’ file contains
Configuration information for Servlets
Initialization parameters for magic numbers
Security roles and authorization schemes
Handlers mapped to exception types
Pages mapped to HTTP error codes
Listeners to respond to application events
References to Enterprise JavaBeans

m Note that which DTD you use is important

The container uses it to work out which version of the Servlet
specification is being used

© Garth Gilmour 2008

A Simple Deployment Descriptor

<?xml version="1.0" encoding="IS0O-8859-1"7>
<IDOCTYPE web-app

PUBLIC “-//Sun Microsystems, Inc.//[DTD Web Application 2.2//[EN”
“http://java.sun.com/j2ee/dtds/web-app 2 2.dtd">

<web-app>
<servlet>
<servlet-name> Fred </servlet-name>
<servlet-class> com.pl.MyFirstServlet </servlet-class>
</serviet>
<servlet-mapping>
<servlet-name>Fred</servlet-name>
<url-pattern>/servlietNol</url-pattern>
</servlet-mapping>
</web-app>

© Garth Gilmour 2008

"
Configuration Using Servlet V2.4

m Servilet 2.4 uses a DTD rather than an XML Schema

Schemas have replaced DTD’s in the XML world as the
preferred means of defining an XML language

Schemas use the XML Namespaces notation

m The schema allows elements to occur in any order
So a ‘servlet’ tag can be followed by its ‘serviet-mapping’

<web-app xmins="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app 2 4.xsd"
version="2.4">
</web-app>

© Garth Gilmour 2008

" J
JavaServer Pages

m JSP’s are an alternative to writing Servlets
They avoid having to split HTML into dozens of ‘printin’ calls
m JSP’s contain a mixture of static markup and Java code

The static markup is streamed directly to the client
The Java code is executed and its output sent

m A JSP is converted into a Servlet by the container
At runtime everything is a Servlet

m JSP’s closely resemble Active Server Pages
The syntax used in the pages is very similar

The implementation is very different
m But similar to that used by ASP .NET pages

© Garth Gilmour 2008

The Server Page Concept

<body>
<h1>Hello!</h1>

—_—— e e e e e e e e e e e ——

I
I
l i
| </head> < Static content — sent as is
I
| |
I

for(String s : data) {

Dynamic content — executed

A

|
|
|
out.write(s); :
|
|
!

_—— e — e e e e — — — e — —]

© Garth Gilmour 2008

" I
Other Types of Deployment

m JEE containers deploy modules
Modules can be WAR files or JAR’s containing EJB’s
The same module can be deployed several times
m As long as it is placed in different contexts
m A JEE application is made up of several modules

A WAR archive, one or more JAR archives containing Enterprise
JavaBeans and any additional libraries

m JEE applications are deployed as an EAR archive
The JAR file must have the enterprise archive extension
The file contains a deployment descriptor called ‘application.xml’

© Garth Gilmour 2008

EJB Archives

JAR

\ 4

META-INF \

XML

\ 4

ejb-jar.xml

\ 4

container specific files...

V2

- T

|
2 course :

‘ /——\————\
demos !

|(—> EJB implementation classes...

© Garth Gilmour 2008

EAR Archives

EAR

> META-INF \

Ve application.xml

> XML

N
7

WAR

webapp.war

S

~
7

JAR

beans.jar

© Garth Gilmour 2008

Writing Servlets

The Java Servlet API

Sample Content © Garth Gilmour 2008 garth@ggilmour.com

" A
The Role Of Servlets

m A Servlet is a Java object which:
Receilves an HTTP request

Extracts information from the request
s From parameters, headers and cookies

Applies business logic
s By talking to a another component

Generates an HTTP response
o Containing a new HTML or XML document
o Cookies can be set to identify the browser

© Garth Gilmour 2008

" B
The Servlet Standard And HTTP

m The Servlet standard Is a wrapper around HTTP
It enables you to process a request and generate a response

m An HTTP request is generated by the browser

It contains the request line, headers and optionally a body
There are seven different types of request
m But only GET and POST are commonly used

m An HTTP response is generated by the server

It contains the status line, headers and an optional body

The status line contains a three digit response code
m 1=info, 2=success, 3=redirection, 4=client error, 5=server error
The body is processed according to the ‘content-type’ header

© Garth Gilmour 2008

GET /test HTTP/1.1

Accept: */*

Accept-Language: en-gb

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.0.3705)
Host: megacorp.com

Connection: Keep-Alive

POST /test HTTP/1.1

Accept: image/qgif, image/x-xbitmap, image/jpeg, image/pjpedqg,
application/vnd.ms-excel,
application/vnd.ms-powerpoint,
application/msword, */*

Accept-Language: en-gb

Content-Type: application/x-www-form-urlencoded

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.0.3705)

Host: megacorp.com

Content-Length: 118

Connection: Keep-Alive

Cache-Control: no-cache

name=Dave&mstatus=S&age=U50&interests=M&interests=B&interests=P
&comments=This+is+text+from+a+text+area&password=wnlhgb

© Garth Gilmour 2008

HTTP/1.1 200 OK

Server: SUNONE WebServer 6.0

Date: Thu, 29 May 2003 20:40:57 GMT

Set-Cookie: SUN_1D=213.107.102.73:187771054240858;
EXPIRES=Wednesday, 31-Dec-2025 23:59:59 GMT;
DOMAIN=.sun.com; PATH=/

Content-type: text/html

Etag: "elda08bc-1c-0-2bf6"

Last-modified: Thu, 29 May 2003 00:13:47 GMT

Content-length: 11254

Accept-ranges: bytes

Connection: close

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html|>
<head><title> Sun Microsystems </title>

BODY OF WEB PAGE OMMITTED

</body>
</htm|>

© Garth Gilmour 2008

"
Triggering a Servlet

m A Serviletis mapped to a URL indirectly
Each Servlet is given an alias in ‘web.xml’
That alias is mapped to one or more URL'’s
m Two separate sections are therefore required
Many modern IDE’s will write these elements for you
If the DTD/Schema is violated deployment will fall
m The container controls a Servlets lifecycle
How many instances are created
When an instance is created and deleted
Which instance receives a particular request
How many threads are using an instance

© Garth Gilmour 2008

Configuring a Servlet in ‘web.xml’

URL Alias Class Name
/login Begin webapp.StartServlet
/logout End webapp.FinishServlet
/order NewBusiness webapp.POServlet
])
Begin
N webapp.StartServlet
OO“\\\QQ (pp))
600(9'
((\G
o
Browser Www.megacorp.comllogoutf End
W 'L(Webapp.FinishServIet)

Wy
W,
. /77 e
9ac o)
N
O/’d
er

NewBusiness
(webapp.POServlet)

© Garth Gilmour 2008

Configuring a Servlet in ‘web.xml’

<?xml version="1.0" encoding="IS0O-8859-1"7>
<IDOCTYPE web-app

PUBLIC “-//Sun Microsystems, Inc.//[DTD Web Application 2.2//[EN”
“http://java.sun.com/j2ee/dtds/web-app 2 2.dtd">

<web-app>
<servlet>
<servlet-name> Begin </servlet-name>
<servlet-class> webapp.StartingServlet </servlet-class>
</servlet>
<servlet-mapping>
<servlet-name> Begin </servlet-name>
<url-pattern> /login </url-pattern>
</servlet-mapping>
</web-app>

© Garth Gilmour 2008

" J
Writing Servlets

m All Servlets inherit from ‘javax.servilet.GenericServlet’
Which provides basic lifecycle and request handling methods

m Servilets normally extend ‘javax.servlet.http.HTTPServiet’
Which provides HTTP specific request management

m HttpServilet contains stubbed out callback methods

One callback for each type of HTTP request

s doPut, doHead, doDelete, doOptions, doTrace, doPost, doGet
To handle one type of request override the matching callback
Usually a Servlet only handles GET or POST requests

© Garth Gilmour 2008

Writing Servlets

import java.io.*;
import javax.servlet.*,
import javax.servlet.http.*;

public class MyFirstServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HitpServietResponse response)
throws IOException, ServletException {
response.setContentType("text/html");
PrintWriter streamToBrowser = response.getWriter();

streamToBrowser.printin("<htmI>");
streamToBrowser.printin("<head><title>Test Page</title></head>");
streamToBrowser.printin("<body><h1>My first servilet</h1></body>");

streamToBrowser.printin("'</html>");

© Garth Gilmour 2008

=
Loading and Unloading A Servlet

m Servlets contain lifecycle methods
Both are inherited from ‘GenericServlet’
The server calls ‘init’ before a request is passed
The server calls ‘delete’ before garbage collection

m Containers support dynamic reloading

When a complete web archive or single class file is overwritten
the container reloads the application

m This requires specialised class loaders that watch the file system
The process is non-trivial and historically a source of bugs
= If in doubt then restart the container itself

© Garth Gilmour 2008

" J
Processing Requests

m Every HTTP callback method takes two parameters
Instances of ‘HTTPServletRequest’ and ‘HTTPServietResponse’

m The request object encapsulates the HTTP request
You use it to investigate the information you have been sent

m The response object encapsulates an HTTP response
You use it to stream content back to the client

m Both of these parameters are interface types
Each container supplies its own implementations
As always you shouldn’t care about container specific classes

© Garth Gilmour 2008

" J
HTTPServletRequest

m Using the request object you can:
Manually process the body of the request
= Using ‘getinputStream’ or ‘getReader’

Extract parameters by name
s Using ‘getParameter’ or ‘getParameterValues’
m It does not matter where the parameters were stored

Iterate through all the parameters
m Using ‘getParameterNames’ or ‘getParameterMap’

Extract or iterate through HTTP headers
Examine cookies, the query string or the URL

© Garth Gilmour 2008

Extracting Parameters

String password = request.getParameter("password");

out.printin("<p><h1>Values of all parameters are:</h1></p>"),
out.printin("<table>");
out.printin("<tr><th>Name</th><th>Value(s)</th></tr>");

Enumeration e = request.getParameterNames();
while(e.hasMoreElements()) {

String name = (String)e.nextElement();

String [] values = request.getParameterValues(name);

out.printin("<tr><td>" + name + "</td><td>");

for(int i=0;i<values.length;i++) {

out.printin(values[i] + " ");

}

}

out.printin("</table>");

© Garth Gilmour 2008

" J
HttpServietResponse

m Using the response object you can:
Set the content type header
= Which tells the browser how to interpret the request

Stream Iinformation back to the client
= Using ‘getOutputStream’ or ‘getWriter’

Set the status code in the response
= Usually to an error code or a redirection

Add headers or cookies to the response

© Garth Gilmour 2008

" A
Initialization Parameters

m Context dependant data should never be hard coded
This will destroy the portability of your application
Examples include usernames, passwords and database URL'’s

m Initialization parameters can be stored in ‘web.xml’
Application level parameters are visible to all JSP’s and Servlets
m They are configured using the ‘context-param’ element
m They are read via the ‘getinitParameter’ method of ‘ServietContext’
Servlet parameters are only read by the corresponding resource
m They are configured using the ‘init-param’ element
m They can only be passed to a JSP if it is configured as a Servlet
m Read using ‘getinitParameter’ inherited from ‘GenericServiet’

© Garth Gilmour 2008

<web-app>
<context-param>
<param-name>appParaml</param-name>
<param-value>This is the text for context level parameter one</param-value>
</context-param>
<servlet>
<servlet-name>InitParamReader</servlet-name>
<servlet-class>demos.servlets.InitParamReader</servlet-class>
<init-param>
<param-name>paraml</param-name>
<param-value>This is the text for Servlet parameter one</param-value>
</init-param>
<init-param>
<param-name>param?2</param-name>
<param-value>This is the text for Servlet parameter two</param-value>
</init-param>
</servlet>
<!— Rest of Deployment Descriptor... -->

String paramOne = getServletContext().getinitParameter("appParam1");
String paramTwo = getlnitParameter("param1");
String paramThree = getInitParameter("param2");

© Garth Gilmour 2008

" J
Session Objects

m Servlets are mapped to URL'’s, not clients
Many clients may use the same instance
A client may use a different instance each time

m The container is responsible for tracking clients
By adding cookies or rewriting URL'’s

m The container creates an ‘HttpSession’ for each client
You can obtain it via ‘HttpServiletRequest.getSession’
It is pointless to try and cache the session object

m The session timeout period can be set in ‘web.xml’
Via the ‘session-config’ and ‘session-timeout’ elements

© Garth Gilmour 2008

" J
Session Objects

m Each running app has its own session objects
Otherwise web apps would interfere with each other
Such as by adding items to each others shopping carts
m A container manages a set of contexts
A separate context exists for each web app
Each web app has it own ‘ServietContext’ object
You can deploy the same WAR twice in different contexts
m Session objects don't have to be persistent
They may not survive a server crash or reboot
But almost all containers now offer this functionality

© Garth Gilmour 2008

Web Application / Context One

Session

T

cart

()

Web Application / Context Two

Session

) 4

cart L

()

© Garth Gilmour 2008

" J
Session Objects

m By default an ‘HttpSession’ object contains
A unique id value (‘getIiD’)
The time of creation (‘getCreationTime’)
The last accessed time (‘getLastAccessedTime’)
The timeout interval (‘getMaxInactivelnterval’)

m Session objects can store arbitrary information

By adding entries to an attributes table
m Which maps strings to object references
m A common usage is for ‘ShoppingCart’ objects

m Sessions are only a temporary store
They collect data into logical units for processing

© Garth Gilmour 2008

" J
Session Objects

m The methods for adding and removing attributes are:
setAttribute(String name, Object value)
removeAttribute(String name)
getAttribute(String name)

m Be careful when choosing attribute names
They must not clash with existing names
Including those used by 3 party frameworks

m Objects can react to being stored in a session
By implementing ‘HttpSessionBindingListener’
Which contains ‘valueBound’ and ‘valueUnbound’

© Garth Gilmour 2008

"
Session Objects and Architecture

m Session objects are a security risk
The timeout limit should be the shortest possible
m Even if this could inconvenience users

A session can be explicitly destroyed
m By calling the method ‘Session.invalidate’
m Use Cases should have an explicit logout step

m Sessions impact the scalability of a design

They must be synchronized across servers in a cluster
They can consume much needed memory

m Designs that anticipate extremely heavy usage place data in special
database tables instead of using Sessions

© Garth Gilmour 2008

"
Threading

m Any number of Servlet objects may be instantiated
The container has full control over their lifecycle

m Typically only one will be created
The container will thread it as much as necessary

m Each call to ‘do<Type>’ is run in a separate thread

If ten clients simultaneously call the same URL the ‘doGet’
method may be running in ten separate threads

All the fields of the Servlet are subject to race conditions
= Which is why you should avoid using them

© Garth Gilmour 2008

Threading

www.mega.com/test 4

Browsers § AliasForTest
> (webapp.TestServlet)

N

!

public void doGet(...)
{

}

I

public void doGet(...)
{

}

I

public void doGet(...)
{

}

|

public void doGet(...)
{

}

v
public void doGet(...)
{

}

/limplementation /limplementation /limplementation /limplementation /limplementation

© Garth Gilmour 2008

"
Threading

m In general Servlets should not have fields
Unless the values are final or thread safe

Objects used by Servlets need to be thread safe
s Controller objects need to be stateless or synchronized
s JDBC and JMS Connection objects are thread safe
s ‘HTTPSession’ implementations are always thread safe

As always local variables are thread safe
m Because they are allocated on the call stack

m Testing should always be multithreaded
Otherwise problems will appear late in development

© Garth Gilmour 2008

" J
SingleThreadModel

m There is a way to enforce single thread behaviour
Your Servlet can implement ‘SingleThreadModel’

m ‘SingleThreadModel’ is a marker interface
At any time only one thread can run on a Servlet object
Useful for wrapping legacy code and testing

m Using this option is a very bad idea
It doesn’t eliminate concurrency problems

It forces the container to do awkward extra work
It is deprecated in the latest version of the Servlet spec

© Garth Gilmour 2008

" J
Reqguest Dispatching

m Servlets should not build a complete page
This results in duplicated code and content

m One Servlet can pass a request to another
Allowing several to cooperate to build a page
This i1s known as Request Dispatching

m Note dispatching works with JSP’s as well
Because a JSP is just a special kind of Servlet

m To dispatch a request the Servlet must know
The name of the Servlet to be called OR
The URL the Serviet is mapped to

© Garth Gilmour 2008

" J
Kinds of Request Dispatching

m There are two kinds of Request Dispatching
A request can be forwarded to another Servlet
The output of another Servlet can be included

m In an include control returns to the calling Servlet

The original Servilet can send output to the browser both before
and after dispatching the request

This is useful for building a complex layout
m In a forward the called Servlet keeps control

The original Servlet cannot write to the browser

Useful for implementing conditional execution
m Filters now provide a better way of doing this

© Garth Gilmour 2008

Forwarding a request (only receiving Servlet contributes)

Browser =@ =@/Iet 2

Including a request (all Servlets can contribute)

Browser =@/Iet 1 Servlet 2

© Garth Gilmour 2008

"
Performing Reqguest Dispatching

m Dispatching is always done indirectly
One Serviet can never reference another
= This would interfere with lifecycle management

Instead a ‘ServiletContext’ object acts as a factory
» It builds ‘RequestDispatcher’ objects
= Which contains ‘forward’ and ‘include’ methods

m There are two ways for building dispatchers

‘getRequestDispatcher’ uses a URL
m Associated with either a Servlet or JSP

‘getNamedDispatcher’ uses a Servlet alias
m This is preferable as it prevents deep linking

© Garth Gilmour 2008

ServletContext sc = getServletContext();
RequestDispatcher rd = sc.getNamedDispatcher(“SERVLET_NAME");

response.setContentType("text/ntml");
PrintWriter out = response.getWriter();

//build the top of the page

out.printin("<htmI>");

out.printin("<head>");

out.printin("<title>Test Page</title>");
out.printin("</head>");

out.printin("<body>");

out.printin("<h3>Included content begins below</h3>");

//include output of another Serviet
rd.include(request,response);

//build the bottom of the page
out.printin("<h3>Included content ends above</h3>");
out.printin("</body>");

out.printin("</html>");

© Garth Gilmour 2008

"
Using Attributes

m \We have covered adding attributes to the HTTPSession
To save information between calls from a client

m The request and context objects also support attributes
The same method calls are used in each case

Attributes are added to the request during dispatching
= To allow the caller to configure the Servlet it is calling

Attributes are added to the context for administration
m To change how the application behaves while it is running
= Any Servlet can view attributes set in the context object

© Garth Gilmour 2008

Attributes Inside Web Applications
Context "[-aBC” o—;@
(One) “DEF"| o—
@ "[“aBC” o—;§
— =
Servlets Requests "[-aBC’ o—;@
(Many)

HDEF” .
HGHIH .

© Garth Gilmour 2008

Adding Information During Request Dispatching

Browser =@ > Servlet 2
(R (%)
abc 0—40

Adding Information Between Multiple Requests

Browser > Servlet
Session/O
abc
=0
> Servlet

Browser ‘=

© Garth Gilmour 2008

