
Web ApplicationsWeb Applications

The Structure and Components of
JEE W b A li tia JEE Web Application

garth@ggilmour.comSample Content © Garth Gilmour 2008

Th St t f W b A li tiThe Structure of a Web Application

 The application is deployed in a ‘Web Archive’
 A structured jar file with the extension ‘.war’
 Most containers will accept an unzipped folder Most containers will accept an unzipped folder

 The archive contains a complete Web Application
 Servlet classes, JSP pages, libraries and other resources
 Libraries in other archives can be referenced in the manifest Libraries in other archives can be referenced in the manifest

 Dynamic content is placed in a ‘WEB-INF’ folder
 Static content can be placed anywhere outside of it
 Java Server Pages count as static content

© Garth Gilmour 2008

WAR WEB-INF XML

web.xml

lib JAR

utilities.jar

classes course

d

MyServlet.class

demos
html

index.html

images

piccie gif

© Garth Gilmour 2008

piccie.gif

Th C t t f WEB INFThe Contents of WEB-INF

 The ‘WEB-INF’ folder should contain three things
 A folder called ‘classes’

 Which contains a package hierarchy of class filesWhich contains a package hierarchy of class files
 A folder called ‘lib’

 Which contains zero or more JAR files
 A configuration file named ‘web.xml’g

 Which the container uses to map Servlet classes to URL’s

 A classpath is created for each web app
 Containing the ‘classes’ folder and all the jars in ‘lib’ Containing the classes folder and all the jars in lib
 Container specific libraries will come first

 This can create dependency problems (e.g. XML Parsers)

© Garth Gilmour 2008

Th D l t D i tThe Deployment Descriptor

 The ‘web.xml’ file contains
 Configuration information for Servlets
 Initialization parameters for magic numbers Initialization parameters for magic numbers
 Security roles and authorization schemes
 Handlers mapped to exception types
 Pages mapped to HTTP error codes Pages mapped to HTTP error codes
 Listeners to respond to application events
 References to Enterprise JavaBeans

 Note that which DTD you use is important Note that which DTD you use is important
 The container uses it to work out which version of the Servlet

specification is being used

© Garth Gilmour 2008

A Si l D l t D i tA Simple Deployment Descriptor
<?xml version=“1.0” encoding=“ISO-8859-1”?>
<!DOCTYPE web-app

PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN”
“http://java sun com/j2ee/dtds/web-app 2 2 dtd”>http://java.sun.com/j2ee/dtds/web app_2_2.dtd >

<web-app>
<servlet>

<servlet-name> Fred </servlet-name>
<servlet-class> com.p1.MyFirstServlet </servlet-class>

</servlet>
<servlet-mapping>

l t F d / l t<servlet-name>Fred</servlet-name>
<url-pattern>/servletNo1</url-pattern>

</servlet-mapping>
</web-app>

© Garth Gilmour 2008

</web app>

C fi ti U i S l t V2 4Configuration Using Servlet V2.4

 Servlet 2.4 uses a DTD rather than an XML Schema
 Schemas have replaced DTD’s in the XML world as the

preferred means of defining an XML languagep g g g
 Schemas use the XML Namespaces notation

 The schema allows elements to occur in any order
 So a ‘servlet’ tag can be followed by its ‘servlet-mapping’ So a servlet tag can be followed by its servlet-mapping

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
version="2.4">

</web-app>

© Garth Gilmour 2008

J S PJavaServer Pages
 JSP’s are an alternative to writing Servlets

 They avoid having to split HTML into dozens of ‘println’ calls
 JSP’s contain a mixture of static markup and Java codep

 The static markup is streamed directly to the client
 The Java code is executed and its output sent

 A JSP is converted into a Servlet by the containery
 At runtime everything is a Servlet

 JSP’s closely resemble Active Server Pages
 The syntax used in the pages is very similary p g y
 The implementation is very different

 But similar to that used by ASP .NET pages

© Garth Gilmour 2008

Th S P C tThe Server Page Concept
<html>

<head>
</head>
<body>

Static content – sent as is
<body>

<h1>Hello!</h1>

<%
for(String s : data) {for(String s : data) {

out.write(s);
}

%>

Dynamic content – executed

© Garth Gilmour 2008

Oth T f D l tOther Types of Deployment

 JEE containers deploy modules
 Modules can be WAR files or JAR’s containing EJB’s
 The same module can be deployed several times The same module can be deployed several times

 As long as it is placed in different contexts

 A JEE application is made up of several modules
 A WAR archive one or more JAR archives containing Enterprise A WAR archive, one or more JAR archives containing Enterprise

JavaBeans and any additional libraries
 JEE applications are deployed as an EAR archive

 The JAR file must have the enterprise archive extension The JAR file must have the enterprise archive extension
 The file contains a deployment descriptor called ‘application.xml’

© Garth Gilmour 2008

EJB A hiEJB Archives

JAR META-INF

XMLXML

ejb-jar.xml

container specific filescontainer specific files…

course

demos

EJB implementation classes…

© Garth Gilmour 2008

EAR A hiEAR Archives

EAR META-INF

XML

application.xml

WARWAR

webapp.war

JAR

beans.jar

© Garth Gilmour 2008

Writing ServletsWriting Servlets

The Java Servlet API

garth@ggilmour.comSample Content © Garth Gilmour 2008

Th R l Of S l tThe Role Of Servlets

 A Servlet is a Java object which:
1. Receives an HTTP request
2. Extracts information from the request

 From parameters, headers and cookies

3 Applies business logic3. Applies business logic
 By talking to a another component

4. Generates an HTTP responsep
 Containing a new HTML or XML document
 Cookies can be set to identify the browser

© Garth Gilmour 2008

Th S l t St d d A d HTTPThe Servlet Standard And HTTP

 The Servlet standard is a wrapper around HTTP
 It enables you to process a request and generate a response

 An HTTP request is generated by the browser An HTTP request is generated by the browser
 It contains the request line, headers and optionally a body
 There are seven different types of request

But only GET and POST are commonly used But only GET and POST are commonly used

 An HTTP response is generated by the server
 It contains the status line, headers and an optional body
 The status line contains a three digit response code

 1=info, 2=success, 3=redirection, 4=client error, 5=server error
 The body is processed according to the ‘content-type’ header

© Garth Gilmour 2008

GET /test HTTP/1 1GET /test HTTP/1.1
Accept: */*
Accept-Language: en-gb
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.0.3705)
Host: megacorp.com
Connection: Keep-Alive

POST /test HTTP/1.1
/ f / b / /Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

application/vnd.ms-excel,
application/vnd.ms-powerpoint,
application/msword, */*

Accept-Language: en-gbAccept Language: en gb
Content-Type: application/x-www-form-urlencoded
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.0.3705)
Host: megacorp.com
Content Length: 118Content-Length: 118
Connection: Keep-Alive
Cache-Control: no-cache

name=Dave&mstatus=S&age=U50&interests=M&interests=B&interests=P

© Garth Gilmour 2008

g
&comments=This+is+text+from+a+text+area&password=wn1hgb

HTTP/1.1 200 OK
Server: SunONE WebServer 6.0
Date: Thu, 29 May 2003 20:40:57 GMT
Set-Cookie: SUN ID=213 107 102 73:187771054240858;Set Cookie: SUN_ID 213.107.102.73:187771054240858;

EXPIRES=Wednesday, 31-Dec-2025 23:59:59 GMT;
DOMAIN=.sun.com; PATH=/

Content-type: text/html
Etag: "e1da08bc-1c-0-2bf6"
L t difi d Th 29 M 2003 00 13 47 GMTLast-modified: Thu, 29 May 2003 00:13:47 GMT
Content-length: 11254
Accept-ranges: bytes
Connection: close

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head><title> Sun Microsystems </title>

BODY OF WEB PAGE OMMITTED

</body>
</html>

BODY OF WEB PAGE OMMITTED

© Garth Gilmour 2008

T i i S l tTriggering a Servlet
 A Servlet is mapped to a URL indirectly

 Each Servlet is given an alias in ‘web.xml’
 That alias is mapped to one or more URL’s

 Two separate sections are therefore required
 Many modern IDE’s will write these elements for you
 If the DTD/Schema is violated deployment will fail

 The container controls a Servlets lifecycle
 How many instances are created
 When an instance is created and deleted
 Which instance receives a particular request
 How many threads are using an instance

© Garth Gilmour 2008

C fi i S l t i ‘ b l’Configuring a Servlet in ‘web.xml’
URL Alias Class Name

/login Begin webapp.StartServlet

/logout End webapp.FinishServlet

/ d N B i b POS l t/order NewBusiness webapp.POServlet

Begin
(webapp.StartServlet)(pp)

End
(b Fi i hS l t)Browser

www.megacorp.com/logout
(webapp.FinishServlet)

NewBusiness

Browser

© Garth Gilmour 2008

(webapp.POServlet)

C fi i S l t i ‘ b l’Configuring a Servlet in ‘web.xml’
<?xml version=“1.0” encoding=“ISO-8859-1”?>
<!DOCTYPE web-app

PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN”
“http://java sun com/j2ee/dtds/web-app 2 2 dtd”>http://java.sun.com/j2ee/dtds/web app_2_2.dtd >

<web-app>
<servlet>

<servlet-name> Begin </servlet-name>
<servlet-class> webapp.StartingServlet </servlet-class>

</servlet>
<servlet-mapping>

l t B i / l t<servlet-name> Begin </servlet-name>
<url-pattern> /login </url-pattern>

</servlet-mapping>
</web-app>

© Garth Gilmour 2008

</web app>

W iti S l tWriting Servlets

 All Servlets inherit from ‘javax.servlet.GenericServlet’
 Which provides basic lifecycle and request handling methods

 Servlets normally extend ‘javax servlet http HTTPServlet’ Servlets normally extend javax.servlet.http.HTTPServlet
 Which provides HTTP specific request management

 HttpServlet contains stubbed out callback methods
 One callback for each type of HTTP request

 doPut, doHead, doDelete, doOptions, doTrace, doPost, doGet
 To handle one type of request override the matching callback
 Usually a Servlet only handles GET or POST requests

© Garth Gilmour 2008

W iti S l tWriting Servlets
import java io *;import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class MyFirstServlet extends HttpServlet {public class MyFirstServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws IOException, ServletException {

response setContentType("text/html");response.setContentType(text/html);
PrintWriter streamToBrowser = response.getWriter();

streamToBrowser.println("<html>");
streamToBrowser println("<head><title>Test Page</title></head>");streamToBrowser.println(<head><title>Test Page</title></head>);
streamToBrowser.println("<body><h1>My first servlet</h1></body>");
streamToBrowser.println("</html>");

}
}

© Garth Gilmour 2008

}

L di d U l di A S l tLoading and Unloading A Servlet

 Servlets contain lifecycle methods
 Both are inherited from ‘GenericServlet’
 The server calls ‘init’ before a request is passed The server calls init before a request is passed
 The server calls ‘delete’ before garbage collection

 Containers support dynamic reloading
 When a complete web archive or single class file is overwritten When a complete web archive or single class file is overwritten

the container reloads the application
 This requires specialised class loaders that watch the file system

 The process is non-trivial and historically a source of bugs The process is non-trivial and historically a source of bugs
 If in doubt then restart the container itself

© Garth Gilmour 2008

P i R tProcessing Requests

 Every HTTP callback method takes two parameters
 Instances of ‘HTTPServletRequest’ and ‘HTTPServletResponse’

 The request object encapsulates the HTTP request The request object encapsulates the HTTP request
 You use it to investigate the information you have been sent

 The response object encapsulates an HTTP response
 You use it to stream content back to the client

 Both of these parameters are interface types
 Each container supplies its own implementationspp p
 As always you shouldn’t care about container specific classes

© Garth Gilmour 2008

HTTPS l tR tHTTPServletRequest

 Using the request object you can:
Manually process the body of the request

U i ‘ tI tSt ’ ‘ tR d ’ Using ‘getInputStream’ or ‘getReader’
 Extract parameters by name

 Using ‘getParameter’ or ‘getParameterValues’
 It does not matter where the parameters were stored

 Iterate through all the parameters
 Using ‘getParameterNames’ or ‘getParameterMap’Using getParameterNames or getParameterMap

 Extract or iterate through HTTP headers
 Examine cookies, the query string or the URL

© Garth Gilmour 2008

E t ti P tExtracting Parameters
String password = request getParameter("password");

out.println("<p><h1>Values of all parameters are:</h1></p>");
out.println("<table>");

String password = request.getParameter(password);

p ()
out.println("<tr><th>Name</th><th>Value(s)</th></tr>");

Enumeration e = request.getParameterNames();
while(e.hasMoreElements()) {(()) {

String name = (String)e.nextElement();
String [] values = request.getParameterValues(name);
out.println("<tr><td>" + name + "</td><td>");
for(int i=0;i<values.length;i++) {(g) {

out.println(values[i] + " ");
}

}

© Garth Gilmour 2008

out.println("</table>");

Htt S l tRHttpServletResponse

 Using the response object you can:
 Set the content type header

 Which tells the browser how to interpret the request

 Stream information back to the client
 Using ‘getOutputStream’ or ‘getWriter’ Using getOutputStream or getWriter

 Set the status code in the response
 Usually to an error code or a redirection

 Add headers or cookies to the response

© Garth Gilmour 2008

I iti li ti P tInitialization Parameters

 Context dependant data should never be hard coded
 This will destroy the portability of your application
 Examples include usernames passwords and database URL’s Examples include usernames, passwords and database URL s

 Initialization parameters can be stored in ‘web.xml’
 Application level parameters are visible to all JSP’s and Servlets

They are configured using the ‘context param’ element They are configured using the context-param element
 They are read via the ‘getInitParameter’ method of ‘ServletContext’

 Servlet parameters are only read by the corresponding resource
 They are configured using the ‘init-param’ element They are configured using the init-param element
 They can only be passed to a JSP if it is configured as a Servlet
 Read using ‘getInitParameter’ inherited from ‘GenericServlet’

© Garth Gilmour 2008

<web-app>
<context-param>

<param-name>appParam1</param-name>
<param-value>This is the text for context level parameter one</param-value>

/ t t</context-param>
<servlet>

<servlet-name>InitParamReader</servlet-name>
<servlet-class>demos.servlets.InitParamReader</servlet-class>
<init-param>p

<param-name>param1</param-name>
<param-value>This is the text for Servlet parameter one</param-value>

</init-param>
<init-param>

<param name>param2</param name><param-name>param2</param-name>
<param-value>This is the text for Servlet parameter two</param-value>

</init-param>
</servlet>
<!– Rest of Deployment Descriptor… -->

String paramOne = getServletContext().getInitParameter("appParam1");
String paramTwo = getInitParameter("param1");
String paramThree = getInitParameter("param2");

© Garth Gilmour 2008

String paramThree = getInitParameter(param2);

S i Obj tSession Objects

 Servlets are mapped to URL’s, not clients
 Many clients may use the same instance
 A client may use a different instance each time A client may use a different instance each time

 The container is responsible for tracking clients
 By adding cookies or rewriting URL’s

Th t i t ‘Htt S i ’ f h li t The container creates an ‘HttpSession’ for each client
 You can obtain it via ‘HttpServletRequest.getSession’
 It is pointless to try and cache the session object

 The session timeout period can be set in ‘web.xml’
 Via the ‘session-config’ and ‘session-timeout’ elements

© Garth Gilmour 2008

S i Obj tSession Objects

 Each running app has its own session objects
 Otherwise web apps would interfere with each other
 Such as by adding items to each others shopping carts Such as by adding items to each others shopping carts

 A container manages a set of contexts
 A separate context exists for each web app
 Each web app has it own ‘ServletContext’ object Each web app has it own ServletContext’ object
 You can deploy the same WAR twice in different contexts

 Session objects don’t have to be persistent
 They may not survive a server crash or reboot
 But almost all containers now offer this functionality

© Garth Gilmour 2008

Web Application / Context OneWeb Application / Context One

Session

cart

Web Application / Context TwoWeb Application / Context Two

SessionSession

cart

© Garth Gilmour 2008

S i Obj tSession Objects

 By default an ‘HttpSession’ object contains
 A unique id value (‘getID’)
 The time of creation (‘getCreationTime’) The time of creation (getCreationTime)
 The last accessed time (‘getLastAccessedTime’)
 The timeout interval (‘getMaxInactiveInterval’)

 Session objects can store arbitrary information Session objects can store arbitrary information
 By adding entries to an attributes table

 Which maps strings to object references
 A common usage is for ‘ShoppingCart’ objects A common usage is for ShoppingCart objects

 Sessions are only a temporary store
 They collect data into logical units for processing

© Garth Gilmour 2008

S i Obj tSession Objects

 The methods for adding and removing attributes are:
 setAttribute(String name, Object value)
 removeAttribute(String name) removeAttribute(String name)
 getAttribute(String name)

 Be careful when choosing attribute names
 They must not clash with existing names They must not clash with existing names
 Including those used by 3rd party frameworks

 Objects can react to being stored in a session
 By implementing ‘HttpSessionBindingListener’
 Which contains ‘valueBound’ and ‘valueUnbound’

© Garth Gilmour 2008

S i Obj t d A hit tSession Objects and Architecture

 Session objects are a security risk
 The timeout limit should be the shortest possible

 Even if this could inconvenience usersEven if this could inconvenience users
 A session can be explicitly destroyed

 By calling the method ‘Session.invalidate’
 Use Cases should have an explicit logout stepp g p

 Sessions impact the scalability of a design
 They must be synchronized across servers in a cluster
 They can consume much needed memory They can consume much needed memory

 Designs that anticipate extremely heavy usage place data in special
database tables instead of using Sessions

© Garth Gilmour 2008

Th diThreading

 Any number of Servlet objects may be instantiated
 The container has full control over their lifecycle

 Typically only one will be created Typically only one will be created
 The container will thread it as much as necessary

 Each call to ‘do<Type>’ is run in a separate thread
 If ten clients simultaneously call the same URL the ‘doGet’

method may be running in ten separate threads
 All the fields of the Servlet are subject to race conditions

 Which is why you should avoid using them

© Garth Gilmour 2008

Th diThreading

AliasForTest
(webapp.TestServlet)

www.mega.com/test

Browsers

public void doGet(…)
{

//implementation

public void doGet(…)
{

//implementation

public void doGet(…)
{

//implementation

public void doGet(…)
{

//implementation

public void doGet(…)
{

//implementation //implementation
}

//implementation
}

//implementation
}

//implementation
}

//implementation
}

© Garth Gilmour 2008

Th diThreading

 In general Servlets should not have fields
 Unless the values are final or thread safe

Obj t d b S l t d t b th d fObjects used by Servlets need to be thread safe
 Controller objects need to be stateless or synchronized
 JDBC and JMS Connection objects are thread safe
 ‘HTTPSession’ implementations are always thread safe

 As always local variables are thread safe
 Because they are allocated on the call stackBecause they are allocated on the call stack

 Testing should always be multithreaded
Otherwise problems will appear late in development

© Garth Gilmour 2008

Si l Th dM d lSingleThreadModel

 There is a way to enforce single thread behaviour
 Your Servlet can implement ‘SingleThreadModel’

 ‘SingleThreadModel’ is a marker interface SingleThreadModel is a marker interface
 At any time only one thread can run on a Servlet object
 Useful for wrapping legacy code and testing

U i thi ti i b d id Using this option is a very bad idea
 It doesn’t eliminate concurrency problems
 It forces the container to do awkward extra work
 It is deprecated in the latest version of the Servlet spec

© Garth Gilmour 2008

R t Di t hiRequest Dispatching

 Servlets should not build a complete page
 This results in duplicated code and content

 One Servlet can pass a request to another One Servlet can pass a request to another
 Allowing several to cooperate to build a page
 This is known as Request Dispatching

N t di t hi k ith JSP’ ll Note dispatching works with JSP’s as well
 Because a JSP is just a special kind of Servlet

 To dispatch a request the Servlet must know
 The name of the Servlet to be called OR
 The URL the Servlet is mapped to

© Garth Gilmour 2008

Ki d f R t Di t hiKinds of Request Dispatching

 There are two kinds of Request Dispatching
 A request can be forwarded to another Servlet
 The output of another Servlet can be included The output of another Servlet can be included

 In an include control returns to the calling Servlet
 The original Servlet can send output to the browser both before

and after dispatching the requestand after dispatching the request
 This is useful for building a complex layout

 In a forward the called Servlet keeps control
Th i i l S l t t it t th b The original Servlet cannot write to the browser

 Useful for implementing conditional execution
 Filters now provide a better way of doing this

© Garth Gilmour 2008

Forwarding a request (only receiving Servlet contributes)

R
Servlet 1Browser Servlet 2

R

Servlet 1Browser Servlet 2

Including a request (all Servlets can contribute)

R R

© Garth Gilmour 2008

P f i R t Di t hiPerforming Request Dispatching

 Dispatching is always done indirectly
One Servlet can never reference another

 This would interfere with lifecycle management This would interfere with lifecycle management
 Instead a ‘ServletContext’ object acts as a factory

 It builds ‘RequestDispatcher’ objects
 Which contains ‘forward’ and ‘include’ methods Which contains forward and include methods

 There are two ways for building dispatchers
 ‘getRequestDispatcher’ uses a URL

A i t d ith ith S l t JSP Associated with either a Servlet or JSP
 ‘getNamedDispatcher’ uses a Servlet alias

 This is preferable as it prevents deep linking

© Garth Gilmour 2008

S C S C ()ServletContext sc = getServletContext();
RequestDispatcher rd = sc.getNamedDispatcher(“SERVLET_NAME");

response.setContentType("text/html");
P i W i W i ()PrintWriter out = response.getWriter();

//build the top of the page
out.println("<html>");

t i tl (" h d ")out.println("<head>");
out.println("<title>Test Page</title>");
out.println("</head>");
out.println("<body>");

t i tl (" h3 I l d d t t b i b l /h3 ")out.println("<h3>Included content begins below</h3>");

//include output of another Servlet
rd.include(request,response);

//build the bottom of the page
out.println("<h3>Included content ends above</h3>");
out.println("</body>");

t i tl (" /ht l ")

© Garth Gilmour 2008

out.println("</html>");

U i Att ib tUsing Attributes

 We have covered adding attributes to the HTTPSession
 To save information between calls from a client

 The request and context objects also support attributes The request and context objects also support attributes
 The same method calls are used in each case
 Attributes are added to the request during dispatching

To allow the caller to configure the Servlet it is calling To allow the caller to configure the Servlet it is calling
 Attributes are added to the context for administration

 To change how the application behaves while it is running
 Any Servlet can view attributes set in the context object Any Servlet can view attributes set in the context object

© Garth Gilmour 2008

Att ib t I id W b A li tiAttributes Inside Web Applications

Context
(One)

“ABC”
“DEF”
“GHI”

Sessions
(Many)

“GHI”

“ABC”
“DEF”

Requests
(Many)

Servlets

“GHI”

“ABC”
“DEF”
“GHI”

© Garth Gilmour 2008

Adding Information During Request Dispatching

Servlet 1Browser Servlet 2

RR

Adding Information During Request Dispatching

R
abc

R

Adding Information Between Multiple Requests

ServletBrowser
R1 Session

abc
def

ServletBrowser
R2

© Garth Gilmour 2008

R2

