
Web ApplicationsWeb Applications

The Structure and Components of
JEE W b A li tia JEE Web Application

garth@ggilmour.comSample Content © Garth Gilmour 2008

Th St t f W b A li tiThe Structure of a Web Application

 The application is deployed in a ‘Web Archive’
 A structured jar file with the extension ‘.war’
 Most containers will accept an unzipped folder Most containers will accept an unzipped folder

 The archive contains a complete Web Application
 Servlet classes, JSP pages, libraries and other resources
 Libraries in other archives can be referenced in the manifest Libraries in other archives can be referenced in the manifest

 Dynamic content is placed in a ‘WEB-INF’ folder
 Static content can be placed anywhere outside of it
 Java Server Pages count as static content

© Garth Gilmour 2008

WAR WEB-INF XML

web.xml

lib JAR

utilities.jar

classes course

d

MyServlet.class

demos
html

index.html

images

piccie gif

© Garth Gilmour 2008

piccie.gif

Th C t t f WEB INFThe Contents of WEB-INF

 The ‘WEB-INF’ folder should contain three things
 A folder called ‘classes’

 Which contains a package hierarchy of class filesWhich contains a package hierarchy of class files
 A folder called ‘lib’

 Which contains zero or more JAR files
 A configuration file named ‘web.xml’g

 Which the container uses to map Servlet classes to URL’s

 A classpath is created for each web app
 Containing the ‘classes’ folder and all the jars in ‘lib’ Containing the classes folder and all the jars in lib
 Container specific libraries will come first

 This can create dependency problems (e.g. XML Parsers)

© Garth Gilmour 2008

Th D l t D i tThe Deployment Descriptor

 The ‘web.xml’ file contains
 Configuration information for Servlets
 Initialization parameters for magic numbers Initialization parameters for magic numbers
 Security roles and authorization schemes
 Handlers mapped to exception types
 Pages mapped to HTTP error codes Pages mapped to HTTP error codes
 Listeners to respond to application events
 References to Enterprise JavaBeans

 Note that which DTD you use is important Note that which DTD you use is important
 The container uses it to work out which version of the Servlet

specification is being used

© Garth Gilmour 2008

A Si l D l t D i tA Simple Deployment Descriptor
<?xml version=“1.0” encoding=“ISO-8859-1”?>
<!DOCTYPE web-app

PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN”
“http://java sun com/j2ee/dtds/web-app 2 2 dtd”>http://java.sun.com/j2ee/dtds/web app_2_2.dtd >

<web-app>
<servlet>

<servlet-name> Fred </servlet-name>
<servlet-class> com.p1.MyFirstServlet </servlet-class>

</servlet>
<servlet-mapping>

l t F d / l t<servlet-name>Fred</servlet-name>
<url-pattern>/servletNo1</url-pattern>

</servlet-mapping>
</web-app>

© Garth Gilmour 2008

</web app>

C fi ti U i S l t V2 4Configuration Using Servlet V2.4

 Servlet 2.4 uses a DTD rather than an XML Schema
 Schemas have replaced DTD’s in the XML world as the

preferred means of defining an XML languagep g g g
 Schemas use the XML Namespaces notation

 The schema allows elements to occur in any order
 So a ‘servlet’ tag can be followed by its ‘servlet-mapping’ So a servlet tag can be followed by its servlet-mapping

<web-app xmlns="http://java.sun.com/xml/ns/j2ee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee

http://java.sun.com/xml/ns/j2ee/web-app_2_4.xsd"
version="2.4">

</web-app>

© Garth Gilmour 2008

J S PJavaServer Pages
 JSP’s are an alternative to writing Servlets

 They avoid having to split HTML into dozens of ‘println’ calls
 JSP’s contain a mixture of static markup and Java codep

 The static markup is streamed directly to the client
 The Java code is executed and its output sent

 A JSP is converted into a Servlet by the containery
 At runtime everything is a Servlet

 JSP’s closely resemble Active Server Pages
 The syntax used in the pages is very similary p g y
 The implementation is very different

 But similar to that used by ASP .NET pages

© Garth Gilmour 2008

Th S P C tThe Server Page Concept
<html>

<head>
</head>
<body>

Static content – sent as is
<body>

<h1>Hello!</h1>

<%
for(String s : data) {for(String s : data) {

out.write(s);
}

%>

Dynamic content – executed

© Garth Gilmour 2008

Oth T f D l tOther Types of Deployment

 JEE containers deploy modules
 Modules can be WAR files or JAR’s containing EJB’s
 The same module can be deployed several times The same module can be deployed several times

 As long as it is placed in different contexts

 A JEE application is made up of several modules
 A WAR archive one or more JAR archives containing Enterprise A WAR archive, one or more JAR archives containing Enterprise

JavaBeans and any additional libraries
 JEE applications are deployed as an EAR archive

 The JAR file must have the enterprise archive extension The JAR file must have the enterprise archive extension
 The file contains a deployment descriptor called ‘application.xml’

© Garth Gilmour 2008

EJB A hiEJB Archives

JAR META-INF

XMLXML

ejb-jar.xml

container specific filescontainer specific files…

course

demos

EJB implementation classes…

© Garth Gilmour 2008

EAR A hiEAR Archives

EAR META-INF

XML

application.xml

WARWAR

webapp.war

JAR

beans.jar

© Garth Gilmour 2008

Writing ServletsWriting Servlets

The Java Servlet API

garth@ggilmour.comSample Content © Garth Gilmour 2008

Th R l Of S l tThe Role Of Servlets

 A Servlet is a Java object which:
1. Receives an HTTP request
2. Extracts information from the request

 From parameters, headers and cookies

3 Applies business logic3. Applies business logic
 By talking to a another component

4. Generates an HTTP responsep
 Containing a new HTML or XML document
 Cookies can be set to identify the browser

© Garth Gilmour 2008

Th S l t St d d A d HTTPThe Servlet Standard And HTTP

 The Servlet standard is a wrapper around HTTP
 It enables you to process a request and generate a response

 An HTTP request is generated by the browser An HTTP request is generated by the browser
 It contains the request line, headers and optionally a body
 There are seven different types of request

But only GET and POST are commonly used But only GET and POST are commonly used

 An HTTP response is generated by the server
 It contains the status line, headers and an optional body
 The status line contains a three digit response code

 1=info, 2=success, 3=redirection, 4=client error, 5=server error
 The body is processed according to the ‘content-type’ header

© Garth Gilmour 2008

GET /test HTTP/1 1GET /test HTTP/1.1
Accept: */*
Accept-Language: en-gb
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.0.3705)
Host: megacorp.com
Connection: Keep-Alive

POST /test HTTP/1.1
/ f / b / /Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

application/vnd.ms-excel,
application/vnd.ms-powerpoint,
application/msword, */*

Accept-Language: en-gbAccept Language: en gb
Content-Type: application/x-www-form-urlencoded
Accept-Encoding: gzip, deflate
User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; .NET CLR 1.0.3705)
Host: megacorp.com
Content Length: 118Content-Length: 118
Connection: Keep-Alive
Cache-Control: no-cache

name=Dave&mstatus=S&age=U50&interests=M&interests=B&interests=P

© Garth Gilmour 2008

g
&comments=This+is+text+from+a+text+area&password=wn1hgb

HTTP/1.1 200 OK
Server: SunONE WebServer 6.0
Date: Thu, 29 May 2003 20:40:57 GMT
Set-Cookie: SUN ID=213 107 102 73:187771054240858;Set Cookie: SUN_ID 213.107.102.73:187771054240858;

EXPIRES=Wednesday, 31-Dec-2025 23:59:59 GMT;
DOMAIN=.sun.com; PATH=/

Content-type: text/html
Etag: "e1da08bc-1c-0-2bf6"
L t difi d Th 29 M 2003 00 13 47 GMTLast-modified: Thu, 29 May 2003 00:13:47 GMT
Content-length: 11254
Accept-ranges: bytes
Connection: close

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head><title> Sun Microsystems </title>

BODY OF WEB PAGE OMMITTED

</body>
</html>

BODY OF WEB PAGE OMMITTED

© Garth Gilmour 2008

T i i S l tTriggering a Servlet
 A Servlet is mapped to a URL indirectly

 Each Servlet is given an alias in ‘web.xml’
 That alias is mapped to one or more URL’s

 Two separate sections are therefore required
 Many modern IDE’s will write these elements for you
 If the DTD/Schema is violated deployment will fail

 The container controls a Servlets lifecycle
 How many instances are created
 When an instance is created and deleted
 Which instance receives a particular request
 How many threads are using an instance

© Garth Gilmour 2008

C fi i S l t i ‘ b l’Configuring a Servlet in ‘web.xml’
URL Alias Class Name

/login Begin webapp.StartServlet

/logout End webapp.FinishServlet

/ d N B i b POS l t/order NewBusiness webapp.POServlet

Begin
(webapp.StartServlet)(pp)

End
(b Fi i hS l t)Browser

www.megacorp.com/logout
(webapp.FinishServlet)

NewBusiness

Browser

© Garth Gilmour 2008

(webapp.POServlet)

C fi i S l t i ‘ b l’Configuring a Servlet in ‘web.xml’
<?xml version=“1.0” encoding=“ISO-8859-1”?>
<!DOCTYPE web-app

PUBLIC “-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN”
“http://java sun com/j2ee/dtds/web-app 2 2 dtd”>http://java.sun.com/j2ee/dtds/web app_2_2.dtd >

<web-app>
<servlet>

<servlet-name> Begin </servlet-name>
<servlet-class> webapp.StartingServlet </servlet-class>

</servlet>
<servlet-mapping>

l t B i / l t<servlet-name> Begin </servlet-name>
<url-pattern> /login </url-pattern>

</servlet-mapping>
</web-app>

© Garth Gilmour 2008

</web app>

W iti S l tWriting Servlets

 All Servlets inherit from ‘javax.servlet.GenericServlet’
 Which provides basic lifecycle and request handling methods

 Servlets normally extend ‘javax servlet http HTTPServlet’ Servlets normally extend javax.servlet.http.HTTPServlet
 Which provides HTTP specific request management

 HttpServlet contains stubbed out callback methods
 One callback for each type of HTTP request

 doPut, doHead, doDelete, doOptions, doTrace, doPost, doGet
 To handle one type of request override the matching callback
 Usually a Servlet only handles GET or POST requests

© Garth Gilmour 2008

W iti S l tWriting Servlets
import java io *;import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class MyFirstServlet extends HttpServlet {public class MyFirstServlet extends HttpServlet {

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws IOException, ServletException {

response setContentType("text/html");response.setContentType(text/html);
PrintWriter streamToBrowser = response.getWriter();

streamToBrowser.println("<html>");
streamToBrowser println("<head><title>Test Page</title></head>");streamToBrowser.println(<head><title>Test Page</title></head>);
streamToBrowser.println("<body><h1>My first servlet</h1></body>");
streamToBrowser.println("</html>");

}
}

© Garth Gilmour 2008

}

L di d U l di A S l tLoading and Unloading A Servlet

 Servlets contain lifecycle methods
 Both are inherited from ‘GenericServlet’
 The server calls ‘init’ before a request is passed The server calls init before a request is passed
 The server calls ‘delete’ before garbage collection

 Containers support dynamic reloading
 When a complete web archive or single class file is overwritten When a complete web archive or single class file is overwritten

the container reloads the application
 This requires specialised class loaders that watch the file system

 The process is non-trivial and historically a source of bugs The process is non-trivial and historically a source of bugs
 If in doubt then restart the container itself

© Garth Gilmour 2008

P i R tProcessing Requests

 Every HTTP callback method takes two parameters
 Instances of ‘HTTPServletRequest’ and ‘HTTPServletResponse’

 The request object encapsulates the HTTP request The request object encapsulates the HTTP request
 You use it to investigate the information you have been sent

 The response object encapsulates an HTTP response
 You use it to stream content back to the client

 Both of these parameters are interface types
 Each container supplies its own implementationspp p
 As always you shouldn’t care about container specific classes

© Garth Gilmour 2008

HTTPS l tR tHTTPServletRequest

 Using the request object you can:
Manually process the body of the request

U i ‘ tI tSt ’ ‘ tR d ’ Using ‘getInputStream’ or ‘getReader’
 Extract parameters by name

 Using ‘getParameter’ or ‘getParameterValues’
 It does not matter where the parameters were stored

 Iterate through all the parameters
 Using ‘getParameterNames’ or ‘getParameterMap’Using getParameterNames or getParameterMap

 Extract or iterate through HTTP headers
 Examine cookies, the query string or the URL

© Garth Gilmour 2008

E t ti P tExtracting Parameters
String password = request getParameter("password");

out.println("<p><h1>Values of all parameters are:</h1></p>");
out.println("<table>");

String password = request.getParameter(password);

p ()
out.println("<tr><th>Name</th><th>Value(s)</th></tr>");

Enumeration e = request.getParameterNames();
while(e.hasMoreElements()) {(()) {

String name = (String)e.nextElement();
String [] values = request.getParameterValues(name);
out.println("<tr><td>" + name + "</td><td>");
for(int i=0;i<values.length;i++) {(g) {

out.println(values[i] + " ");
}

}

© Garth Gilmour 2008

out.println("</table>");

Htt S l tRHttpServletResponse

 Using the response object you can:
 Set the content type header

 Which tells the browser how to interpret the request

 Stream information back to the client
 Using ‘getOutputStream’ or ‘getWriter’ Using getOutputStream or getWriter

 Set the status code in the response
 Usually to an error code or a redirection

 Add headers or cookies to the response

© Garth Gilmour 2008

I iti li ti P tInitialization Parameters

 Context dependant data should never be hard coded
 This will destroy the portability of your application
 Examples include usernames passwords and database URL’s Examples include usernames, passwords and database URL s

 Initialization parameters can be stored in ‘web.xml’
 Application level parameters are visible to all JSP’s and Servlets

They are configured using the ‘context param’ element They are configured using the context-param element
 They are read via the ‘getInitParameter’ method of ‘ServletContext’

 Servlet parameters are only read by the corresponding resource
 They are configured using the ‘init-param’ element They are configured using the init-param element
 They can only be passed to a JSP if it is configured as a Servlet
 Read using ‘getInitParameter’ inherited from ‘GenericServlet’

© Garth Gilmour 2008

<web-app>
<context-param>

<param-name>appParam1</param-name>
<param-value>This is the text for context level parameter one</param-value>

/ t t</context-param>
<servlet>

<servlet-name>InitParamReader</servlet-name>
<servlet-class>demos.servlets.InitParamReader</servlet-class>
<init-param>p

<param-name>param1</param-name>
<param-value>This is the text for Servlet parameter one</param-value>

</init-param>
<init-param>

<param name>param2</param name><param-name>param2</param-name>
<param-value>This is the text for Servlet parameter two</param-value>

</init-param>
</servlet>
<!– Rest of Deployment Descriptor… -->

String paramOne = getServletContext().getInitParameter("appParam1");
String paramTwo = getInitParameter("param1");
String paramThree = getInitParameter("param2");

© Garth Gilmour 2008

String paramThree = getInitParameter(param2);

S i Obj tSession Objects

 Servlets are mapped to URL’s, not clients
 Many clients may use the same instance
 A client may use a different instance each time A client may use a different instance each time

 The container is responsible for tracking clients
 By adding cookies or rewriting URL’s

Th t i t ‘Htt S i ’ f h li t The container creates an ‘HttpSession’ for each client
 You can obtain it via ‘HttpServletRequest.getSession’
 It is pointless to try and cache the session object

 The session timeout period can be set in ‘web.xml’
 Via the ‘session-config’ and ‘session-timeout’ elements

© Garth Gilmour 2008

S i Obj tSession Objects

 Each running app has its own session objects
 Otherwise web apps would interfere with each other
 Such as by adding items to each others shopping carts Such as by adding items to each others shopping carts

 A container manages a set of contexts
 A separate context exists for each web app
 Each web app has it own ‘ServletContext’ object Each web app has it own ServletContext’ object
 You can deploy the same WAR twice in different contexts

 Session objects don’t have to be persistent
 They may not survive a server crash or reboot
 But almost all containers now offer this functionality

© Garth Gilmour 2008

Web Application / Context OneWeb Application / Context One

Session

cart

Web Application / Context TwoWeb Application / Context Two

SessionSession

cart

© Garth Gilmour 2008

S i Obj tSession Objects

 By default an ‘HttpSession’ object contains
 A unique id value (‘getID’)
 The time of creation (‘getCreationTime’) The time of creation (getCreationTime)
 The last accessed time (‘getLastAccessedTime’)
 The timeout interval (‘getMaxInactiveInterval’)

 Session objects can store arbitrary information Session objects can store arbitrary information
 By adding entries to an attributes table

 Which maps strings to object references
 A common usage is for ‘ShoppingCart’ objects A common usage is for ShoppingCart objects

 Sessions are only a temporary store
 They collect data into logical units for processing

© Garth Gilmour 2008

S i Obj tSession Objects

 The methods for adding and removing attributes are:
 setAttribute(String name, Object value)
 removeAttribute(String name) removeAttribute(String name)
 getAttribute(String name)

 Be careful when choosing attribute names
 They must not clash with existing names They must not clash with existing names
 Including those used by 3rd party frameworks

 Objects can react to being stored in a session
 By implementing ‘HttpSessionBindingListener’
 Which contains ‘valueBound’ and ‘valueUnbound’

© Garth Gilmour 2008

S i Obj t d A hit tSession Objects and Architecture

 Session objects are a security risk
 The timeout limit should be the shortest possible

 Even if this could inconvenience usersEven if this could inconvenience users
 A session can be explicitly destroyed

 By calling the method ‘Session.invalidate’
 Use Cases should have an explicit logout stepp g p

 Sessions impact the scalability of a design
 They must be synchronized across servers in a cluster
 They can consume much needed memory They can consume much needed memory

 Designs that anticipate extremely heavy usage place data in special
database tables instead of using Sessions

© Garth Gilmour 2008

Th diThreading

 Any number of Servlet objects may be instantiated
 The container has full control over their lifecycle

 Typically only one will be created Typically only one will be created
 The container will thread it as much as necessary

 Each call to ‘do<Type>’ is run in a separate thread
 If ten clients simultaneously call the same URL the ‘doGet’

method may be running in ten separate threads
 All the fields of the Servlet are subject to race conditions

 Which is why you should avoid using them

© Garth Gilmour 2008

Th diThreading

AliasForTest
(webapp.TestServlet)

www.mega.com/test

Browsers

public void doGet(…)
{

//implementation

public void doGet(…)
{

//implementation

public void doGet(…)
{

//implementation

public void doGet(…)
{

//implementation

public void doGet(…)
{

//implementation //implementation
}

//implementation
}

//implementation
}

//implementation
}

//implementation
}

© Garth Gilmour 2008

Th diThreading

 In general Servlets should not have fields
 Unless the values are final or thread safe

Obj t d b S l t d t b th d fObjects used by Servlets need to be thread safe
 Controller objects need to be stateless or synchronized
 JDBC and JMS Connection objects are thread safe
 ‘HTTPSession’ implementations are always thread safe

 As always local variables are thread safe
 Because they are allocated on the call stackBecause they are allocated on the call stack

 Testing should always be multithreaded
Otherwise problems will appear late in development

© Garth Gilmour 2008

Si l Th dM d lSingleThreadModel

 There is a way to enforce single thread behaviour
 Your Servlet can implement ‘SingleThreadModel’

 ‘SingleThreadModel’ is a marker interface SingleThreadModel is a marker interface
 At any time only one thread can run on a Servlet object
 Useful for wrapping legacy code and testing

U i thi ti i b d id Using this option is a very bad idea
 It doesn’t eliminate concurrency problems
 It forces the container to do awkward extra work
 It is deprecated in the latest version of the Servlet spec

© Garth Gilmour 2008

R t Di t hiRequest Dispatching

 Servlets should not build a complete page
 This results in duplicated code and content

 One Servlet can pass a request to another One Servlet can pass a request to another
 Allowing several to cooperate to build a page
 This is known as Request Dispatching

N t di t hi k ith JSP’ ll Note dispatching works with JSP’s as well
 Because a JSP is just a special kind of Servlet

 To dispatch a request the Servlet must know
 The name of the Servlet to be called OR
 The URL the Servlet is mapped to

© Garth Gilmour 2008

Ki d f R t Di t hiKinds of Request Dispatching

 There are two kinds of Request Dispatching
 A request can be forwarded to another Servlet
 The output of another Servlet can be included The output of another Servlet can be included

 In an include control returns to the calling Servlet
 The original Servlet can send output to the browser both before

and after dispatching the requestand after dispatching the request
 This is useful for building a complex layout

 In a forward the called Servlet keeps control
Th i i l S l t t it t th b The original Servlet cannot write to the browser

 Useful for implementing conditional execution
 Filters now provide a better way of doing this

© Garth Gilmour 2008

Forwarding a request (only receiving Servlet contributes)

R
Servlet 1Browser Servlet 2

R

Servlet 1Browser Servlet 2

Including a request (all Servlets can contribute)

R R

© Garth Gilmour 2008

P f i R t Di t hiPerforming Request Dispatching

 Dispatching is always done indirectly
One Servlet can never reference another

 This would interfere with lifecycle management This would interfere with lifecycle management
 Instead a ‘ServletContext’ object acts as a factory

 It builds ‘RequestDispatcher’ objects
 Which contains ‘forward’ and ‘include’ methods Which contains forward and include methods

 There are two ways for building dispatchers
 ‘getRequestDispatcher’ uses a URL

A i t d ith ith S l t JSP Associated with either a Servlet or JSP
 ‘getNamedDispatcher’ uses a Servlet alias

 This is preferable as it prevents deep linking

© Garth Gilmour 2008

S C S C ()ServletContext sc = getServletContext();
RequestDispatcher rd = sc.getNamedDispatcher(“SERVLET_NAME");

response.setContentType("text/html");
P i W i W i ()PrintWriter out = response.getWriter();

//build the top of the page
out.println("<html>");

t i tl (" h d ")out.println("<head>");
out.println("<title>Test Page</title>");
out.println("</head>");
out.println("<body>");

t i tl (" h3 I l d d t t b i b l /h3 ")out.println("<h3>Included content begins below</h3>");

//include output of another Servlet
rd.include(request,response);

//build the bottom of the page
out.println("<h3>Included content ends above</h3>");
out.println("</body>");

t i tl (" /ht l ")

© Garth Gilmour 2008

out.println("</html>");

U i Att ib tUsing Attributes

 We have covered adding attributes to the HTTPSession
 To save information between calls from a client

 The request and context objects also support attributes The request and context objects also support attributes
 The same method calls are used in each case
 Attributes are added to the request during dispatching

To allow the caller to configure the Servlet it is calling To allow the caller to configure the Servlet it is calling
 Attributes are added to the context for administration

 To change how the application behaves while it is running
 Any Servlet can view attributes set in the context object Any Servlet can view attributes set in the context object

© Garth Gilmour 2008

Att ib t I id W b A li tiAttributes Inside Web Applications

Context
(One)

“ABC”
“DEF”
“GHI”

Sessions
(Many)

“GHI”

“ABC”
“DEF”

Requests
(Many)

Servlets

“GHI”

“ABC”
“DEF”
“GHI”

© Garth Gilmour 2008

Adding Information During Request Dispatching

Servlet 1Browser Servlet 2

RR

Adding Information During Request Dispatching

R
abc

R

Adding Information Between Multiple Requests

ServletBrowser
R1 Session

abc
def

ServletBrowser
R2

© Garth Gilmour 2008

R2

